[スポンサーリンク]

一般的な話題

ラジカル重合の弱点を克服!精密重合とポリマーの高機能化を叶えるRAFT重合

[スポンサーリンク]

アゾ重合開始剤とその関連技術について学べるシリーズ第3弾!

第1回第2回では、アゾ重合開始剤について知識を深めていただきました。

アゾ重合開始剤はラジカル重合において開始剤として用いられます。ラジカル重合は様々な利点から広く用いられていますが、分子量分布の制御が難しいという弱点もあります。今回は、ラジカル重合をより精密に制御できる「RAFT重合」についてご紹介いたします。

富士フイルム和光純薬株式会社では、量産化レベルでご提供できるRAFT剤を多数ラインナップしております。また、RAFT剤の合成からRAFT重合までの一貫した受託製造も承っております。

サンプルのご提供や、研究に合わせたご提案も可能ですので、是非お問い合わせください!

Ⅰ.ラジカル重合の弱点                                        

ラジカル重合は多様なモノマーへの適用が可能で特殊設備を比較的必要とせず、水中での反応も容易であるというメリットから、工業的に広く使われています。

しかし、従来のラジカル重合は、成長ラジカル同士が結合する「再結合」による停止や、成長ラジカルが反応系中の他の分子から水素などを引き抜いて失活するとともに新たな成長ラジカルが生成する「連鎖移動」等の副反応が起きることから反応の制御が難しく、また、一旦ラジカル活性種が生成すると停止反応や連鎖移動反応が起こるまでは成長反応を続けるため、分子量の精密な制御は困難であるという特徴があります。

このため、ラジカル重合の生成物は重合度がまちまちな、分子量分布の広い高分子になりやすいという弱点がありました。

この弱点を克服できるのがリビングラジカル重合であり、中でも注目されているのが『RAFT重合 (Reversible Addition-Fragmentation Chain Transfer Polymerization, 可逆的付加開裂連鎖移動重合)』なのです!

 

Ⅱ.リビングラジカル重合とは?                                       

リビング(生きている)とは、まさに重合活性種(成長ラジカル)が死なないことです。したがって、リビング重合とはポリマー末端の生長点が「生きた」まま、すなわち反応性を保った状態で重合が進むものを指します。

リビングラジカル重合としては、主に ATRP、NMP(Nitroxide-Mediated Radical Polymerization:ニトロキシド介在ラジカル重合)、RAFT重合の3種が知られています。

中でもRAFT重合は、

・通常のラジカル重合系にRAFT剤を加えるだけで精密重合が可能

・有毒な金属触媒を必要としない

・多くの官能基や溶媒(水を含む)が利用可能

という利点から、その論文数・特許件数は徐々に増加しています

 

Ⅲ.RAFT重合とは?                                     

RAFT重合は、連鎖移動剤(RAFT剤)を用いて分子量分布が狭いポリマーやブロックポリマーなどの高機能なポリマーを合成することができる手法です。

生長中のポリマー末端のラジカル(P・)に対して、RAFT剤が付加した後、脱離基Rがラジカルとして離れてゆき、ここから新たなポリマー鎖が生長します(連鎖移動反応)。新たに生成したジチオエステル類は再び連鎖移動剤として働くため、これらの反応はモノマーが完全に消費されるまで繰り返されるというのが、RAFT重合の基本的な流れです。

 

Ⅳ.RAFT剤の選び方                                      

前述の通り、RAFT重合は交換連鎖によってリビングラジカル重合になっていますが、この平衡反応は成長末端のラジカルとRAFT剤に付加してできるラジカルの安定性が重要です。

そのため、モノマーに応じて最適なRAFT剤を選ぶことが、十分な制御の実現につながります。

富士フイルム和光純薬では、様々なモノマーに適合するRAFT剤をご用意しております。

【RAFT剤とモノマーの適合表】

 

Ⅴ.アゾ重合開始剤残存率計算ツールのご紹介                                           

最後に、アゾ重合開始剤をお使いの皆様へお役立ちツールを紹介します!

通常、残存率や反応条件(分解反応時間、分解反応温度)を特定するためには、文献を参照したり複雑な計算式を用いて計算したりする必要がありますが、それらをワンクリックで算出できるのが『アゾ重合開始剤 残存率計算ツール』です。

当社の研究部門でも大好評のツールですので、研究の際には是非ご活用ください!

ここまでお読みいただきありがとうございました。

富士フイルム和光純薬では、豊富な知見から様々なご提案をさせていただいております。皆様の研究をサポートいたしますので、お気軽にお問い合わせください。

関連リンク 

富士フイルム和光純薬 化成品HP

アゾ重合開始剤とその関連技術について学べるシリーズ

 

Avatar photo

ケムステPR

投稿者の記事一覧

ケムステのPRアカウントです。募集記事や記事体広告関連の記事を投稿します。

関連記事

  1. 振動強結合によるイオン伝導度の限界打破に成功
  2. だんだん柔らかくなるCOF!柔軟性の違いによる特性変化
  3. 論文の自己剽窃は推奨されるべき?
  4. 4つの性がある小鳥と超遺伝子
  5. 光/熱で酸化特性のオン/オフ制御が可能な分子スイッチの創出に成功…
  6. 東京化成工業がケムステVシンポに協賛しました
  7. 女性科学者の卵を支援―「ロレアル・ユネスコ女性科学者 日本奨励賞…
  8. 上村大輔教授追悼記念講演会

注目情報

ピックアップ記事

  1. 第129回―「環境汚染有機物質の運命を追跡する」Scott Mabury教授
  2. 三井物と保土谷 多層カーボンナノチューブを量産
  3. 自己組織化ねじれ双極マイクロ球体から円偏光発光の角度異方性に切り込む
  4. 第一手はこれだ!:古典的反応から最新反応まで2 |第7回「有機合成実験テクニック」(リケラボコラボレーション)
  5. EDTA:分子か,双性イオンか
  6. マイクロ波プロセスを知る・話す・考える ー新たな展望と可能性を探るパネルディスカッションー
  7. 触媒的C-H活性化型ホウ素化反応
  8. 化学系必見!博物館特集 野辺山天文台編~HC11Nってどんな分子?~
  9. 深共晶溶媒 Deep Eutectic Solvent
  10. 抽出精製型AJIPHASE法の開発

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2024年1月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP