[スポンサーリンク]

一般的な話題

ラジカル重合の弱点を克服!精密重合とポリマーの高機能化を叶えるRAFT重合

[スポンサーリンク]

アゾ重合開始剤とその関連技術について学べるシリーズ第3弾!

第1回第2回では、アゾ重合開始剤について知識を深めていただきました。

アゾ重合開始剤はラジカル重合において開始剤として用いられます。ラジカル重合は様々な利点から広く用いられていますが、分子量分布の制御が難しいという弱点もあります。今回は、ラジカル重合をより精密に制御できる「RAFT重合」についてご紹介いたします。

富士フイルム和光純薬株式会社では、量産化レベルでご提供できるRAFT剤を多数ラインナップしております。また、RAFT剤の合成からRAFT重合までの一貫した受託製造も承っております。

サンプルのご提供や、研究に合わせたご提案も可能ですので、是非お問い合わせください!

Ⅰ.ラジカル重合の弱点                                        

ラジカル重合は多様なモノマーへの適用が可能で特殊設備を比較的必要とせず、水中での反応も容易であるというメリットから、工業的に広く使われています。

しかし、従来のラジカル重合は、成長ラジカル同士が結合する「再結合」による停止や、成長ラジカルが反応系中の他の分子から水素などを引き抜いて失活するとともに新たな成長ラジカルが生成する「連鎖移動」等の副反応が起きることから反応の制御が難しく、また、一旦ラジカル活性種が生成すると停止反応や連鎖移動反応が起こるまでは成長反応を続けるため、分子量の精密な制御は困難であるという特徴があります。

このため、ラジカル重合の生成物は重合度がまちまちな、分子量分布の広い高分子になりやすいという弱点がありました。

この弱点を克服できるのがリビングラジカル重合であり、中でも注目されているのが『RAFT重合 (Reversible Addition-Fragmentation Chain Transfer Polymerization, 可逆的付加開裂連鎖移動重合)』なのです!

 

Ⅱ.リビングラジカル重合とは?                                       

リビング(生きている)とは、まさに重合活性種(成長ラジカル)が死なないことです。したがって、リビング重合とはポリマー末端の生長点が「生きた」まま、すなわち反応性を保った状態で重合が進むものを指します。

リビングラジカル重合としては、主に ATRP、NMP(Nitroxide-Mediated Radical Polymerization:ニトロキシド介在ラジカル重合)、RAFT重合の3種が知られています。

中でもRAFT重合は、

・通常のラジカル重合系にRAFT剤を加えるだけで精密重合が可能

・有毒な金属触媒を必要としない

・多くの官能基や溶媒(水を含む)が利用可能

という利点から、その論文数・特許件数は徐々に増加しています

 

Ⅲ.RAFT重合とは?                                     

RAFT重合は、連鎖移動剤(RAFT剤)を用いて分子量分布が狭いポリマーやブロックポリマーなどの高機能なポリマーを合成することができる手法です。

生長中のポリマー末端のラジカル(P・)に対して、RAFT剤が付加した後、脱離基Rがラジカルとして離れてゆき、ここから新たなポリマー鎖が生長します(連鎖移動反応)。新たに生成したジチオエステル類は再び連鎖移動剤として働くため、これらの反応はモノマーが完全に消費されるまで繰り返されるというのが、RAFT重合の基本的な流れです。

 

Ⅳ.RAFT剤の選び方                                      

前述の通り、RAFT重合は交換連鎖によってリビングラジカル重合になっていますが、この平衡反応は成長末端のラジカルとRAFT剤に付加してできるラジカルの安定性が重要です。

そのため、モノマーに応じて最適なRAFT剤を選ぶことが、十分な制御の実現につながります。

富士フイルム和光純薬では、様々なモノマーに適合するRAFT剤をご用意しております。

【RAFT剤とモノマーの適合表】

 

Ⅴ.アゾ重合開始剤残存率計算ツールのご紹介                                           

最後に、アゾ重合開始剤をお使いの皆様へお役立ちツールを紹介します!

通常、残存率や反応条件(分解反応時間、分解反応温度)を特定するためには、文献を参照したり複雑な計算式を用いて計算したりする必要がありますが、それらをワンクリックで算出できるのが『アゾ重合開始剤 残存率計算ツール』です。

当社の研究部門でも大好評のツールですので、研究の際には是非ご活用ください!

ここまでお読みいただきありがとうございました。

富士フイルム和光純薬では、豊富な知見から様々なご提案をさせていただいております。皆様の研究をサポートいたしますので、お気軽にお問い合わせください。

関連リンク 

富士フイルム和光純薬 化成品HP

アゾ重合開始剤とその関連技術について学べるシリーズ

 

Avatar photo

ケムステPR

投稿者の記事一覧

ケムステのPRアカウントです。募集記事や記事体広告関連の記事を投稿します。

関連記事

  1. トップ研究論文を使って学ぶ!非ネイティブ研究者のための科学英語自…
  2. エチレンを離して!
  3. 今年はキログラムに注目だ!
  4. ライトケミカル工業株式会社ってどんな会社?
  5. 危険物質 「化学物質の審査及び製造等の規制に関する法律(化審法)」の申請と…
  6. 真空ポンプはなぜ壊れる?
  7. 海外留学ってどうなんだろう? ~きっかけ編~
  8. 誤った科学論文は悪か?

注目情報

ピックアップ記事

  1. Branch選択的不斉アリル位C(Sp3)–Hアルキル化反応
  2. ニセ試薬のサプライチェーン
  3. 「リチウムイオン電池用3D炭素電極の開発」–Caltech・Greer研より
  4. 奈良坂・プラサード還元 Narasaka-Prasad Reduction
  5. フィッシャー オキサゾール合成 Fischer Oxazole Synthesis
  6. 一度に沢山の医薬分子を放出できるプロドラッグ
  7. 前代未聞のねつ造論文 学会発表したデータを基に第三者が論文を発表
  8. 祝!明治日本の産業革命遺産 世界遺産登録
  9. オーヴァーマン転位 Overman Rearrangement
  10. ブラシノステロイド (brassinosteroid)

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2024年1月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

最新記事

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

第58回Vシンポ「天然物フィロソフィ2」を開催します!

第58回ケムステVシンポジウムの開催告知をさせて頂きます!今回のVシンポは、コロナ蔓延の年202…

第76回「目指すは生涯現役!ロマンを追い求めて」櫛田 創 助教

第76回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第75回「デジタル技術は化学研究を革新できるのか?」熊田佳菜子 主任研究員

第75回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第74回「理想的な医薬品原薬の製造法を目指して」細谷 昌弘 サブグループ長

第74回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第57回ケムステVシンポ「祝ノーベル化学賞!金属有機構造体–MOF」を開催します!

第57回ケムステVシンポは、北川 進 先生らの2025年ノーベル化学賞受賞を記念して…

櫛田 創 Soh Kushida

櫛田 創(くしだそう)は日本の化学者である。筑波大学 数理物質系 物質工学域・助教。専門は物理化学、…

細谷 昌弘 Masahiro HOSOYA

細谷 昌弘(ほそや まさひろ, 19xx年xx月xx日-)は、日本の創薬科学者である。塩野義製薬株式…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP