[スポンサーリンク]

ケムステニュース

ダイハツなど、福島第一原発廃炉に向けハニカム型水素安全触媒を開発 自動車用を応用

[スポンサーリンク]

ダイハツ工業と関西学院大学・理工学部・田中裕久研究室の研究グループは7月22日、福島第一原発廃炉に向けた課題の1つである水素安全の確立のため、自動車触媒を応用した「ハニカム型水素安全触媒」を開発したと発表した。  (引用:Response7月22日)

福島第一原子力発電所の事故から8年が経過し、廃炉に向けた作業が続けられていますが、廃炉にするためには、核燃料が一度溶融して原子炉内外で溶けた燃料デブリと呼ばれるものを取り出す必要があります。しかしながら、燃料デブリも高レベルの放射性物質であり、核分裂を続けているため、周囲の水が放射線によって水素に分解されてしまうことが課題となっています。燃料デブリを安全に運搬・保管するためには、放射線を遮蔽できる密閉容器に入れる必要がありますが、水素の爆発限界は4%から75%ととても広く、爆発を起こさないようにするためには水素の濃度を4%未満に保つ必要があります。そこで本研究では、水素を分解できる触媒の開発を行いました。

この研究は、ガソリン自動車用の排ガス触媒をこの水素除去に応用できないか考えたことが特徴で、具体的に下記4項目について検討が行われ、それぞれの項目で知見が得られました。

  • 触媒性能評価:燃料デブリの核分裂を抑えるために容器を冷却することが予想され、低温でも水素を分解できることが必要です。そこで温度を変えて触媒の水素分解効率を測定しました。すると評価に用いた触媒は-20℃から活性があることがわかりました。

触媒性能︓低温から⽔素を⽔に戻す反応(引用:SPring-8プレスリリース)

  • 触媒反応メカニズム:触媒がどのような条件で水素と酸素が反応できるかを確かめるためにSPring-8を使って反応時に触媒の挙動を追跡しました。すると、Pdに結合している水素に酸素が近づき水が生成する水素過剰条件では、雰囲気がWet条件でも活性の低下は起こりにくく反応が続くことがわかりました。これにより密閉容器内で触媒の反応で水分が増えても触媒の活性が落ちないことが予想されます。

触媒反応メカニズム解析(引用:SPring-8プレスリリース)

  • スケールアップ:水素を6%充填した5,450 Lの容器に触媒を静置して水素の分解速度を測定しました。改良の結果、約3時間で水素濃度を1%以下に低下させることに成功し、約280 L/時間の水素を処理できる量産性の触媒であることが分かりました。

⼤スケールでの実験(引用:SPring-8プレスリリース)

  • 形状:触媒の形状についても検討され、燃料デブリの保管容器をほとんど改造することなく取り付けて水素の除去性能を発揮できるような触媒の試作に成功しました。

この研究では、自動車会社であるダイハツと関西学院大学・理工学部・田中裕久研究室が中心として進められ、大型放射光施設 SPring-8 における反応メカニズムに解析については日本原子力研究開発機構の協力により、触媒試作は、自動車用触媒の大手である株式会社キャタラー日本ガイシ株式会社の協力により得られた成果です。また触媒改良の効果は、ドイツ・ユーリッヒ研究所 (Forschungszentrum Juelich GmbH) の大スケール反応装置にて実証されました。田中裕久教授は、自動車の触媒がご専門、エネルギー問題に関連した触媒の研究を行っています。

放射性物質を短期間で無害化することは不可能で、放射線を遮蔽できる容器に入れて安定同位体になるまで放置するしか手段はありません。この水素の問題も長期保管する上での課題であり、電気といった外部からのエネルギー供給がなくてもどんな時でも水素濃度を爆発限界以下に保つ技術が必要とされています。自動車用触媒も排気管接続され、自動車が廃車になるまで排ガスを浄化するために使われるものであり、使用条件が似ていることから応用が検討されたと推測されます。長期の安定性を短期間で実証することは大変難しいですが、原発事故をもう一度起こさずに廃炉を完了するために安全技術の確立を続けてほしいと思います。

関連書籍

[amazonjs asin=”478533228X” locale=”JP” title=”触媒化学 (化学の指針シリーズ)”] [amazonjs asin=”4061568116″ locale=”JP” title=”触媒化学 ―基礎から応用まで (エキスパート応用化学テキストシリーズ)”]

関連リンク

Avatar photo

Zeolinite

投稿者の記事一覧

ただの会社員です。某企業で化学製品の商品開発に携わっています。社内でのデータサイエンスの普及とDX促進が個人的な野望です。

関連記事

  1. 塩野義製薬/米クレストール訴訟、控訴審でも勝訴
  2. ノーベル医学生理学賞、米の2氏に
  3. ノーベル化学賞受賞者が講演 3月1日、徳島文理大学
  4. タンチョウ:殺虫剤フェンチオンで中毒死増加
  5. 第7回ImPACT記者懇親会が開催
  6. ファンケル、「ツイントース」がイソフラボンの生理活性を高める働き…
  7. 大村氏にウメザワ記念賞‐国際化学療法学会が授与
  8. 元素も分析する電子顕微鏡

注目情報

ピックアップ記事

  1. トム・スタイツ Thomas A. Steitz
  2. 2009年10月人気化学書籍ランキング
  3. 創薬におけるモダリティの意味と具体例
  4. 高分子材料におけるマテリアルズ・インフォマティクスの活用とは?
  5. 大村 智 Satoshi Omura
  6. 1,3-ジヨード-5,5-ジメチルヒダントイン:1,3-Diiodo-5,5-dimethylhydantoin
  7. 10-メチルアクリジニウム触媒を用いたBaeyer-Villiger酸化反応
  8. 原田 明 Akira Harada
  9. マイクロ波を用いた革新的製造プロセスとヘルスケア領域への事業展開 (凍結乾燥/乾燥、ペプチド/核酸合成、晶析、その他有機合成など)
  10. 水素社会実現に向けた連続フロー合成法を新開発

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年8月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

最新記事

Host-Guest相互作用を利用した世界初の自己修復材料”WIZARDシリーズ”

昨今、脱炭素社会への実現に向け、石油原料を主に使用している樹脂に対し、メンテナンス性の軽減や材料の長…

有機合成化学協会誌2025年4月号:リングサイズ発散・プベルル酸・イナミド・第5族遷移金属アルキリデン錯体・強発光性白金錯体

有機合成化学協会が発行する有機合成化学協会誌、2025年4月号がオンラインで公開されています!…

第57回若手ペプチド夏の勉強会

日時2025年8月3日(日)~8月5日(火) 合宿型勉強会会場三…

人工光合成の方法で有機合成反応を実現

第653回のスポットライトリサーチは、名古屋大学 学際統合物質科学研究機構 野依特別研究室 (斎藤研…

乙卯研究所 2025年度下期 研究員募集

乙卯研究所とは乙卯研究所は、1915年の設立以来、広く薬学の研究を行うことを主要事業とし、その研…

次世代の二次元物質 遷移金属ダイカルコゲナイド

ムーアの法則の限界と二次元半導体現代の半導体デバイス産業では、作製時の低コスト化や動作速度向上、…

日本化学連合シンポジウム 「海」- 化学はどこに向かうのか –

日本化学連合では、継続性のあるシリーズ型のシンポジウムの開催を企画していくことに…

【スポットライトリサーチ】汎用金属粉を使ってアンモニアが合成できたはなし

Tshozoです。 今回はおなじみ、東京大学大学院 西林研究室からの研究成果紹介(第652回スポ…

第11回 野依フォーラム若手育成塾

野依フォーラム若手育成塾について野依フォーラム若手育成塾では、国際企業に通用するリーダー…

第12回慶應有機化学若手シンポジウム

概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大学理工学部・…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP