[スポンサーリンク]

スポットライトリサーチ

室温で緑色発光するp型/n型新半導体を独自の化学設計指針をもとにペロブスカイト型硫化物で実現

[スポンサーリンク]

第195回のスポットライトリサーチは、東京工業大学 科学技術創成研究院(平松研究室半沢幸太さんにお願いしました。

半沢さんは本コーナー2回目の登場となります(前回の記事:鉄系超伝導体の臨界温度が4倍に上昇)。当時は超伝導体材料の開発を主眼としていましたが、あれから2年たち、今度はなんと分野を変えての発光性半導体研究にてお披露目となります。本成果はJ. Am. Chem. Soc.誌に掲載され、東工大からプレスリリースされています。

“Material Design of Green-Light-Emitting Semiconductors: Perovskite-Type Sulfide SrHfS3
Hanzawa, K.; Iimura, S.; Hiramatsu, H.; Hosono, H. J. Am. Chem. Soc. 2019, 141, 5343–5349. DOI: 10.1021/jacs.8b13622

現場で直接指導された平松秀典 准教授からは、半沢さんについて以下のようなコメントを頂いています。

半沢君は、当研究室入学直後から、出身の農工大内藤研で培った卓越したプロセス技術と、それを当研究室でさらに5年間で大幅に成長させた気鋭の若手です。今回JACSに掲載された成果は、彼が中心となって、寝食を忘れるほどこの研究テーマに打ち込んだから得られたものです。彼は平松が主指導教員として輩出した博士第一号ということもあり、先日の3月末で彼が学位を取得した際には感慨深いものがありました。4月からはポスドクとして平松研で引き続き活躍してもらっています。今後も一層の飛躍が期待できる若手と確信しております。

それでは半沢さんからのメッセージをご覧下さい!

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

昨今、需要が高まっている緑色発光する新規の半導体物質を化学結合(非結合性軌道)と適切な結晶構造(バンドの折りたたみ)に着目した独自の指針をもとに設計し、実験的にその設計指針の有用性を立証しました。

現在主流のIII-V族をベースとする半導体LEDは、緑色の色域においてその量子効率が激減します(図1)。この深刻な問題を解決することが、次世代光半導体デバイスの実現には必要不可欠です。

図1 III-V族半導体が抱えるグリーンギャップ問題[1]

本研究では、非結合性軌道の作るドーピングに適したエネルギー準位と超周期構造を構築することで発現するバンドの折りたたみを用いることで、本来は間接遷移型の物質のバンドギャップを意図的に直接遷移型へと設計することで、緑色で効率よく発光する半導体の探索を行いました(図2)。

図2 物質内の化学結合と結晶構造に着目した新半導体設計指針

実際に第一原理計算を用いたスクリーニングを行ったところ、ペロブスカイト型の結晶構造を有するAEHfS3(AE=Ca, Sr, Baなどのアルカリ土類金属)が目的に適した電子構造を有することがわかりましたので、実際に試料作製を行いました。SrHfS3に適した不純物のドーピングを行うことで、p型・n型どちらの極性も示すこと、さらに室温でも明るい緑色発光を示すことを見いだし、実験的に本研究で提案した化学設計指針の有効性を立証しました(図3)。今回開発した新規半導体をもとに、今後は単結晶薄膜を用いたpn接合を作製することで、高効率な次世代緑色LEDが実現できると期待しています。

図2. SrHfS3の電子構造と室温における電気輸送・発光特性

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

工夫したところは、高効率に緑色で光り、かつp型にもn型にもドーピング可能な半導体物質をいかに見いだすかという化学設計指針を打ち立てることです。実際に半導体として利用しようと考えた際には、有効質量やバンドギャップのような機能に直結する部分だけが着目されがちですが、本研究では、非毒性元素から構成され、化学的に安定な化合物であること、薄膜成長させて使用するために高対称の結晶構造を有することまで考慮した指針をゼロから考えました。多くの化合物群から今回最終的に候補としたものが遷移金属とカルコゲンをベースとする化合物で、ちょうど3年前にChem-Stationでご紹介いただいたFeSeの研究と少し類似しているところがあり、どちらの研究も思い入れの深いものとなりました。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

n型のドーピングは、+2価のSrサイトに+3価のLaを部分置換することで簡単に成功したのですが、p型のドーピングを実現するまでは苦労しました。事前に行った第一原理計算の結果では、p型伝導に寄与する価電子帯上端のエネルギー準位は一般的にドーピングが可能とされる範囲付近にあり、簡単なはずだと最初は予想していました。しかしながら、実際に可能性のあるドーパントのどれを試しても上手くいきませんでした。この際、作業効率のためにすべてのドーパントで1つのドーピング濃度のみを試していたのですが、各実験バッチの歩留まりも関連してくる可能性があるとも考え、諦めずに、最終的には5種類ほどのドーピング濃度を全ドーパント候補で試していきました。その結果、−2価のSサイトを−3価のPで部分置換させることでp型の電気伝導を得ることができました。

Q4. 将来は化学とどう関わっていきたいですか?

以前、Chem-Stationに寄稿させていただいた際は、幅広い知識と視野で、様々な分野を横断した研究をしていきたいと書かせていただきました。今回の研究は、以前の超伝導体から半導体に研究分野を移したもので、その一歩と考えています。半導体の研究を通して、実際に使える新材料を目指して研究することの重要性を再認識することができました。今後は、実際に自分が見いだした物質が、「材料」として社会に役立つように、つまり自身の研究を社会に還元していけるように邁進していきたいと思っています。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

今回の成果はご指導いただいた指導教員である平松先生、元素戦略センター長の細野先生、同センター助教の飯村先生をはじめ、研究室の皆様のご協力のおかげです。
深く感謝いたします。

この研究を始めたのは、博士後期課程の半ばに差し掛かるころでした。超伝導体から半導体の研究へと大幅に分野を変えることや、博士論文としてどちらの内容も論理的に組み込めるようなペースで実験を進めなくてはいけないことから、知識的にも時間的にもたいへんな日々でした。しかしながら、それ以上に、今まで経験したことのない分野の研究に携わるのは楽しく、多くの学びのある日々だったといまは実感しています。ですので、興味があれば思い切っていろいろな研究分野にどんどん手を出して見て欲しいと思っています。

最後に、新年度が始まり研究室に新入生が入ってくる頃だと思います。皆さんは研究をしに大学に来ているので、日々反省はしても決して後悔はしないよう研究生活を過ごしていきましょう。

参考文献

  1. M. Auf et al. Phys. Rev. Lett. 2016116, 027401. DOI: 10.1103/PhysRevLett.116.027401

研究者の略歴

名前:半沢 幸太
所属(当時):東京工業大学・物質理工学院・平松研究室 博士課程3年
所属(現在):東京工業大学・科学技術創成研究院・フロンティア材料研究所・平松研究室 博士研究員
研究テーマ:新機能性材料の探索

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 日本にあってアメリカにないガラス器具
  2. AI翻訳エンジンを化学系文章で比較してみた
  3. 若手化学者に朗報!YMC研究奨励金に応募しよう!
  4. 2009年人気記事ランキング
  5. 仙台の高校生だって負けてません!
  6. CAS Future Leaders Program 2022 …
  7. キラル超原子価ヨウ素試薬を用いる不斉酸化
  8. 半導体・センシング材料に応用可能なリン複素環化合物の誘導体化

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 第一回 人工分子マシンの合成に挑む-David Leigh教授-
  2. 科学英語の書き方とプレゼンテーション (増補)
  3. 化学反応のクックパッド!? MethodsNow
  4. ポンコツ博士の海外奮闘録 〜ポスドク失職・海外オファー編〜
  5. ニューマン・クワート転位 Newman-Kwart Rearrangement
  6. 女子の強い味方、美味しいチョコレート作りを助ける化合物が見出される
  7. 【協業ご検討中の方向け】マイクロ波化学とのコラボレーションの実際
  8. Carl Boschの人生 その10
  9. Dihydropyridazinone環構造を有する初の天然物 Actinopyridazinoneを発見 ~微生物の持つヒドラジン生合成経路の多様性を解明~
  10. ヘム獲得系のハイジャックによる緑膿菌の選択的殺菌法

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年4月
1234567
891011121314
15161718192021
22232425262728
2930  

注目情報

最新記事

電子のスピンに基づく新しい「異性体」を提唱―スピン状態を色で見分けられる分子を創製―

第614回のスポットライトリサーチは、京都大学大学院工学研究科(松田研究室)の清水大貴 助教にお願い…

Wei-Yu Lin教授の講演を聴講してみた

bergです。この度は2024年5月13日(月)に東京大学 本郷キャンパス(薬学部)にて開催されたW…

【26卒】太陽HD研究開発 1day仕事体験

太陽HDでの研究開発職を体感してみませんか?私たちの研究活動についてより近くで体験していただく場…

カルベン転移反応 ~フラスコ内での反応を生体内へ~

有機化学を履修したことのある方は、ほとんど全員と言っても過言でもないほどカルベンについて教科書で習っ…

ナノ学会 第22回大会 付設展示会ケムステキャンペーン

ナノ学会の第22回大会が東北大学青葉山新キャンパスにて開催されます。協賛団体であるACS(ア…

【酵素模倣】酸素ガスを用いた MOF 内での高スピン鉄(IV)オキソの発生

Long らは酸素分子を酸化剤に用いて酵素を模倣した反応活性種を金属-有機構造体中に発生させ、C-H…

【書評】奇跡の薬 16 の物語 ペニシリンからリアップ、バイアグラ、新型コロナワクチンまで

ペニシリンはたまたま混入したアオカビから発見された──だけではない.薬の…

MEDCHEM NEWS 33-2 号「2022年度医薬化学部会賞」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

マテリアルズ・インフォマティクスにおける分子生成の基礎と応用

開催日:2024/05/22 申込みはこちら■開催概要「分子生成」という技術は様々な問題…

AlphaFold3の登場!!再びブレイクスルーとなりうるのか~実際にβ版を使用してみた~

2021年にタンパク質の立体構造予測ツールであるAlphaFold2 (AF2) が登場し、様々な分…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP