[スポンサーリンク]

化学者のつぶやき

反応の選択性を制御する新手法

[スポンサーリンク]

 ベンジル基をもつ4級アンモニウム1を強塩基で処理すると、アンモニウムイリド2を経由して[1,2]-シグマトロピー転位(Stevens転位)と [2,3]-シグマトロピー転位(Sommelet–Hauser転位)が競合して起こることが知られています(図 1)。

図1. アンモニウムイリドの2種類の転位反応

図1. アンモニウムイリドの2種類の転位反応

 

速度論支配の反応では、一般に活性化エネルギーがより小さい遷移状態(TS B)を経て反応が進行します(図 2a)。反応の選択性を制御するには、一方の生成物に対応した遷移状態のみを安定化または不安定化させればよい。しかし、上記2つの転位反応は共通の遷移状態3を経由して進行するため、選択性を制御することができませんでした(図 2b)[1]。最近、テキサスA&M大学のSingletonらはdynamic matchingという概念を用いてこれらの転位反応の選択性の制御に成功しました。

“Controlling Selectivity by Controlling the Path of Trajectories”

Bissau, B.;  Singleton, D. A. J. Am. Chem. Soc. 2015, 137, 14244. DOI: 10.1021/jacs.5b08635

 

2016-01-30_16-52-34

図2

dynamic matchingとは

 dynamic matchingとは、反応の遷移状態における原子の運動の方向(transition vector)が後に起こる反応経路に影響するという考え方です[2]。この考えに従うと図3aのように、単一の遷移状態から異なる2つの生成物が得られる場合、原子の運動方向にそった反応が優先して進行します。

アンモニウムイリドの[2,3]-転位反応はC3−C2結合の形成とC1–N結合の開裂が協奏的に進行します。一方、[1,2]-転位反応では協奏的なシグマトロピー転位反応は軌道の対象性から禁制となるため進行しない(Woodward–Hoffmann則)。実際の[1,2]-転位ではC1–N結合が開裂した後C1–C2結合の形成が起こります(図 3b)。

 

図3. (a)Dynamic matchingの概念図 (b)実際の反応

図3. (a)Dynamic matchingの概念図 (b)実際の反応

 

著者らはこれに注目し、遷移状態において原子団が離れる方向に動いている場合(図3b,TS1)、協奏的な[2,3]-転位反応よりも、C1–N結合開裂が優先しておこり、その後のC1–C2結合形成によって [1,2]-転位生成物が得られると考えました。逆に、遷移状態において原子がC3−C2結合を形成するような方向に動いていた場合(図3b,TS2)、協奏的な[2,3]-転位反応が起こり [2,3]-転位生成物が優先して得られます。著者らは、Hammond仮説(付録参照)に基づき、始原系を相対的に安定化させることによって遷移状態の構造を [2,3]-転位生成物に近づけました。この遷移状態では原子がC3−C2結合を形成する向きに動いており、[2,3]-転位が優先しておこります(図 4)。

図4. 遷移状態の移動によるTransition vectorの変化

図4. 遷移状態の移動によるTransition vectorの変化

 

著者らはモデル基質として4級アンモニウム塩8を用いました(図5)。8は塩基によって脱プロトン化され、エノラート型のイリド9を形成します。9を安定化する溶媒や塩基の検討をした結果、メタノール溶媒中で、ナトリウムメトキシドを塩基として用いて反応を行うと[2,3]-転位生成物が優先して得られました。著者はエノラートの酸素原子とメタノールによる水素結合によってイリド9が安定化され、遷移状態が生成系に近くなったためであると述べています。また、非プロトン性溶媒中でジアザビシクロウンデセン(DBU)を塩基として反応を行った場合、[2,3]-転位生成物が選択的に得られた。このことについて著者はDBUの共役酸はメタノールよりもプロトンの供与性が高く、イリド9をより安定化したためであると述べています。

図5. 始原系の安定化による選択性の向上

図5. 始原系の安定化による選択性の向上

まとめ

今回著者らは、遷移状態の早遅を変えることでアンモニウムイリドの転位反応の選択性を制御することに成功しました。この報告は、単に一例の転位反応の選択性を制御するだけでなく、一般的な選択性の制御とは異なる、dynamic matchingを用いた新たなアプローチを提言した面白い論文でした。

 

参考文献

  1. Biswas, B.; Collins, S. C.; Singleton, D. A. J. Am. Chem. Soc. 2014, 136, 3740. DOI: 10.1021/ja4128289
  2. Carpenter, B. K. J. Am. Chem. Soc. 1995, 117, 6336. DOI: 10.1021/ja00128a024

 

Hammond仮説

ある素反応において始原系が遷移状態を経て生成系へと変化していく際にとりうる各状態で、自由エネルギー的に近い状態は構造的にも類似しているという仮説。Hammond仮説よると発熱反応において、遷移状態のエネルギーは生成系よりも始原系に近いので、遷移状態の構造も始原系に近い。逆に、吸熱反応においては、遷移状態のエネルギーは始原系よりも生成系に近いので、遷移状態の構造も原型に近い。

bona

bona

投稿者の記事一覧

愛知で化学を教えています。よろしくお願いします。

関連記事

  1. 紫外線に迅速応答するフォトクロミック分子
  2. 量子力学が予言した化学反応理論を実験で証明する
  3. 書店で気づいたこと ~電気化学の棚の衰退?~
  4. 化学構造式描画のスタンダードを学ぼう!【基本編】
  5. 「ラブ・ケミストリー」の著者にインタビューしました。
  6. ピリジン同士のラジカル-ラジカルカップリング
  7. マイクロプラスチックの諸問題
  8. 「有機合成と生化学を組み合わせた統合的研究」スイス連邦工科大学チ…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ルィセンコ騒動のはなし(後編)
  2. ピナー ピリミジン合成 Pinner Pyrimidine Synthesis
  3. 天野 浩 Hiroshi Amano
  4. Reaxys Prize 2017ファイナリスト発表
  5. ラリー・オーヴァーマン Larry E. Overman
  6. 農薬DDTが大好きな蜂
  7. サントリー生命科学研究者支援プログラム SunRiSE
  8. 均一系水素化 Homogeneous Hydrogenaton
  9. 危険物データベース:危険物に関する基礎知識
  10. ヒュッケル法(前編)~手計算で分子軌道を求めてみた~

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2016年4月
« 3月   5月 »
 123
45678910
11121314151617
18192021222324
252627282930  

注目情報

注目情報

最新記事

MEDCHEM NEWSと提携しました

「くすり」に関係する研究者や技術者が約1万7専任が所属する日本薬学会。そ…

抗体を液滴に濃縮し細胞内へ高速輸送:液-液相分離を活用した抗体の新規細胞内輸送法の開発

第341回のスポットライトリサーチは、京都大学 薬学研究科(二木研究室)博士後期課程1年の岩田恭宗さ…

革新的なオンライン会場!「第53回若手ペプチド夏の勉強会」参加体験記

夏休みも去って新学期も始まり、研究者としては科研費申請に忙しい時期ですね。学会シーズン到来の足音も聞…

実験手袋をいろいろ試してみたーつかいすてから高級手袋までー

前回は番外編でしたが、試してみたシリーズ本編に戻ります。引き続き実験関係の消耗品…

第164回―「光・熱エネルギーを変換するスマート材料の開発」Panče Naumov教授

第164回の海外化学者インタビューは、パンチェ・ナウモフ教授です。大阪大学大学院工学研究科 生命先端…

SNS予想で盛り上がれ!2021年ノーベル化学賞は誰の手に?

今年もノーベル賞シーズンの到来です!化学賞は日本時間 10月6日(水) 18時45分に発表です。昨年…

カーボンナノチューブ薄膜のSEM画像を生成し、物性を予測するAIが開発される

先端素材高速開発技術研究組合(ADMAT)、日本ゼオンは産業技術総合研究所(AIST)と共同で、NE…

ケムステ版・ノーベル化学賞候補者リスト【2021年版】

各媒体からかき集めた情報を元に、「未来にノーベル化学賞の受賞確率がある、存命化学者」をリストアップし…

ライトケミカル工業2023卒採用情報

当社の技術グループは、20代~30代の若手社員が重要な主要案件を担当しています。広範囲で高レベルな化…

アブラナ科植物の自家不和合性をタンパク質複合体の観点から解明:天然でも希少なSP11タンパク質の立体構造予測を踏まえて

第340回のスポットライトリサーチは、東京大学 大学院農学生命科学研究科の森脇 由隆…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP