[スポンサーリンク]

一般的な話題

ドーパミンで音楽にシビれる

GREEN031400.PNG

Google Chrome 「あなたのウェブを、はじめよう」キャンペーンCMで使われた『Tell Your World』のミニアルバムが2012年3月14日に発売とのこと。世界217の国と地域で配信を達成したのは、ご存じ、電子の歌姫「初音ミク」でした。作曲に加え、プログラムをはじめ初音ミク開発に携わった方々へも敬意を表しつつ、このニュースにちなんで音楽(と やっぱり化学)の話題でも紹介します。

ボーカロイド化学ソングについては過去にいくつかの記事(組曲『ノーベル化学賞』ケミストリ・ソングスなど)がありますが、音楽と化学の接点と言えばアレクサンドル・ボロディンも有名です。カルボン酸の銀塩に臭素を作用させ脱炭酸を経てブロモ化アルキルを得るボロディン反応に名を残したボロディンは、作曲家としても知られています。ボロディンの代表作『韃靼人の踊り(Polovtsian Dances )』は、音楽に詳しくなくても、どこかで聞いたことがある曲かもしれません。ボロディンのような例を考えると、ふと芸術と学術の間には何か共通のセンスがあるのかなと、思ってしまいます。

今回の記事では、100年以上昔のボロディンにまつわる話ではなく、物質の面から科学は音楽にどう迫ったのか、ほんのここ数年で明らかにされてきた内容を紹介します。

初音ミク『Tell Your World』を聴いているときにも、あなたの脳細胞で物質はやりとりされています。 音楽に感動してシビれた刹那に何が起こるのか、真相の鍵はドーパミンと呼ばれる化合物です。

 

おおおおおGoogle Chrome キャンペーンCM

 

音楽に感動することは、実に人間らしい心の動きです。高次の脳機能を持つヒト以外に、音楽で感動するとはっきり確認された例は、ほとんどありません。音楽の感動は、心、ありていに言えばの中で起こる現象です。

患者を診療したカルテが揃っている精神疾患や、恐怖におののくなどヒト以外にラットなど実験動物でも調べられるどちらかと言えばマイナスの感情については、研究しやすいため今まで優れた報告が多数あります。しかし、ヒトを人たらしめるどちらかと言えばプラスの感情については、方法が限られていたため明らかにされていないことばかりでした。科学の限界は、音楽にどのような分子のメスを入れるのか、最近の知見を紹介します。

 

  • 音楽に感動した気持ちを定規で測れるか

脳はノイズが大きく機能も複雑なため、単に血流が増えたとか、電気シグナルが活発になったとかで、流行のなんちゃって脳科学 のように安易な結論を導くことはできません。音楽に感動する、と言っても、いったい何をもって、そう判断すればよいのでしょうか。

まず確認されたところによると、好きな曲を聴くことで、音楽の身震いにより感動した喜びの気持ち(pleasure)が増すにつれて、心拍が増え、呼吸数が増加し、体温が低下し、血圧が降下し、皮膚が通気しやすくなったそうです。確かに、このようなパラメーターならば、客観的に数値化できます。こういう一見すると地味なデータが、ロジックを組むために意外と大切なようです。では、音楽を聴いて感動しているかどうかの指標が定まったところで、脳では何が起きているのか、核磁気共鳴画像や陽電子断層撮影などのハイテク技術でクローズアップしていきましょう。

 

  • 核磁気共鳴画像法:予感と経験の2種類の活動パターン

脳の血中酸素レベルは核磁気共鳴画像法(magnetic resonance imaging; MRI)で分かります。この方法では、赤血球のヘモグロビンにくっつく酸素の状態を識別して検出しており、結果として脳のどこが活発に活動しているか分かります。化合物の構造決定でおなじみ(?)の核磁気共鳴ですがこちらでもしっかり役立っています

核磁気共鳴画像の結果によると、信号の変化と、音楽を聴いた鳥肌感の高まりは同期していました。空間スケールと時間スケールの観点から信号パターンを読み解くと、どうやら音楽を聴いたときの感動には、曲調の高まりを予感(anticipation)して気分がだんだんと高まっていく過程と、クライマックスを経験(experience)して感極まった瞬間と、2種類あるようです。ベートーベンの第九でたとえると、第一楽章から第三楽章までで張られた伏線を楽しむのが前者で、第四楽章の『歓喜の歌』でいっきにグッとくるあの感じが後者でしょうか。

GREEN031419.PNG

脳をイメージングした模式図ですよ模式図

 

  • 陽電子断層撮影法:ドーパミンが快楽の座に作用

では、物質のレベルでこのとき何が起きているのでしょうか。核磁気共鳴画像を読影すると、隣接した尾状核と側坐核のあたりに信号がありました。このあたりは中脳から神経調節物質によって制御される快楽の座として知られています。情報をやりとりする実体として、ここで、ドーパミンの登場です。

よし、ドーパミンを同位体標識して血管に注射してみよう、と考えたあなた。それはダメです。ドーパミンは血液脳関門という物質のやり取りを制限する障壁を突破できません。脳にはほとんど作用せず、量を過剰にしても自律神経を乱して体調を崩し、音楽を聴くどころではなくなります。

ここでは、ラクロプライドという化合物を用います。このラクロプライドは、脳に取り込まれ、ドーパミンの受容体タンパク質にはくっつくものの、シグナル伝達のスイッチをオンにはしない性質を持っています。

 

GREEN03142.PNG

具体的な方法はと言うと、炭素11で放射性同位体標識した適量のラクロプライドを投与し、陽電子断層撮影法(positron emission tomography; PET)で検出します。陽子が多く中性子が少ない不安定同位体の場合、弱い相互作用でベータ崩壊が起きると、陽子が、陽電子と中性子になります。この陽電子が周りの電子にぶつかって対消滅したときに放出される信号を検出する方法が、陽電子断層撮影法です。

炭素11の半減期はたったの20分なのでラクロプライドは素早く合成します。炭素11ヨウ化メチル(11CH3I)かメチルトリフレート(11CH3OTf)でフェノール性ヒドロキシ基をメチル化するようです。そして、できたてほやほやのラクロプライドを投与し、音楽を聴きながら、装置に入ってもらったところ、期待通り尾状核から側坐核にかけて信号が検出されました。

  • 世界中の誰だれより科学のしらべがあなたを魅了してあげる

これらの結果から、ドーパミンが脳の決まった領域ではたらき、曲調の高まりを予感して気分がだんだんと高まっていく過程と、クライマックスを経験して感極まる瞬間のそれぞれで脳の活動が活発になって、ひとは音楽に感動し、心拍や呼吸数などが変化する、といったストーリーが描かれます。

音楽に合わせて脳のどこでどのようにドーパミンが作用していたのか明らかにした今回の研究は、音楽がすべての人類の社会にわたってなぜこんなにも高い価値を持つのかを意味づける道しるべとなるでしょう。また、予感と経験の2つのフェーズがあるという知見は、実際に作曲の段階で意識すると効果的かもしれませんね。

外科手術が不要な非侵襲の方法で、脳の活動を調べられる設備が揃い始めたのは、ほんの最近のことです。たくさんの点は線になって、いくつもの線は面になって、科学が解き明かすひとつひとつの知識が、やがて世界を変えていく。今のイメージング技術の基礎原理を開拓した先人は、ゆめゆめこのように応用されるとは予想もしていなかったはずです。断片がつながった先で、あなたはどんな未来を奏でますか?

化学は世界にどんなつながりを提供していくのでしょうかね。

 


  • 参考ウェブページ

Google Chrome で、あなたのウェブを、はじめよう。(http://www.google.co.jp/chrome/intl/ja/betterweb/miku.html )

 


  • 参考文献
[1] ドーパミンで音楽にシビれる

“Anatomically distinct dopamine release during anticipation and experience of peak emotion to music” Valorie N Salimpoor et al. Nature Neuroscience 2010 DOI: 10.1038/nn.2726

 


  • 関連書籍

 

The following two tabs change content below.
Green

Green

静岡で化学を教えています。よろしくお願いします。
Green

最新記事 by Green (全て見る)

関連記事

  1. スイスの博士課程ってどうなの?3〜面接と入学手続き〜
  2. Angewandte Chemieの新RSSフィード
  3. 速報! ノーベル物理学賞2014日本人トリプル受賞!!
  4. 化学エンターテイメント小説第2弾!『猫色ケミストリー』 
  5. 化学系学生のための企業合同説明会
  6. チオール架橋法による位置選択的三環性ペプチド合成
  7. メタンハイドレートの化学 ~その2~
  8. 有機反応を俯瞰する ー[1,2] 転位

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 植村酸化 Uemura Oxidation
  2. 有機リチウム試薬 Organolithium Reagents
  3. なぜ青色LEDがノーベル賞なのか?ー性能向上・量産化編
  4. 相原静大教授に日本化学会賞 芳香族の安定性解明
  5. クネーフェナーゲル縮合 Knoevenagel Condensation
  6. ベンジャミン・フランクリンメダル―受賞化学者一覧
  7. カルボニル化を伴うクロスカップリング Carbonylative Cross Coupling
  8. 化学のブレークスルー【有機化学編】
  9. 可視光で働く新しい光触媒を創出 -常識を覆す複合アニオンの新材料を発見-
  10. 「一家に1枚」ポスターの企画募集

関連商品

注目情報

注目情報

最新記事

Googleの面接で話した自分の研究内容が勝手に特許出願された

This is what happened when I went to visit a giant…

信頼度の高い合成反応を学ぶ:Science of Synthesis(SoS)

今回はScience of Synthesis(SoS)という合成化学のオンラインデータベースを紹介…

ホイスラー合金を用いる新規触媒の発見と特性調節

第174回目のスポットライトリサーチは、東北大学 学際科学フロンティア研究所・小嶋隆幸 助教にお願い…

START your chemi-story あなたの化学を探す 研究職限定 キャリアマッチングLIVE

さあついに今年も就職活動の時期がやってきました。私の研究室でも今年はさすがに何名か就職活動をはじめま…

【ジーシー】新卒採用情報(2020卒)

弊社の社是「施無畏」は、「相手の身になって行動する」といった意味があります。これを具現化することで存…

【ジーシー】新たな治療価値を創造するテクノロジー -BioUnion-

BioUnion(バイオユニオン)はグラスアイオノマーで培ってきたイオンの働きに着目し,新たに完成さ…

PAGE TOP