[スポンサーリンク]

スポットライトリサーチ

2つの触媒と光エネルギーで未踏の化学反応を実現: 芳香族化合物のメタ位選択的アシル化の開発に成功 !!!

[スポンサーリンク]

第556回のスポットライトリサーチは、京都大学 化学研究所 大宮研究室の後藤 大和(ごとう やまと)さんにお願いしました。

大宮研究室では、新触媒・新反応・新機能を有機化学的な研究手法で創りだし、創薬・生命科学研究の未来を切り拓くことを目標に研究を行っています。具体的には、N-ヘテロ環カルベン触媒や有機硫黄光触媒のような有機触媒を独自の手法でデザインし、これらを用いることで、一電子移動を伴うラジカル反応を能動的に制御し、分子変換反応を開発しました。また、ラジカル反応を核酸誘導体の化学修飾に応用することで、創薬・生命科学研究における新たなケミカルスペースの開拓に繋げています。さらに、ラジカルが生じる有機ホウ素化合物を独自にデザインすることで、これまで実現困難であったアセチルコリンのような生物機能分子のケージド化法を開発し、ケミカルバイオロジー分野に貢献しています。

本プレスリリースの研究内容は芳香族化合物のメタ位選択的アシル化反応についてです。本研究グループでは、青色LED照射下、環境負荷の少ない有機触媒を2つ組み合わせて用いることで、電子供与性基の置換した電子豊富な芳香族化合物のメタ位選択的アシル化反応の開発に成功しました。この研究成果は、「Nature Synthesis」誌に掲載され、またプレスリリースにも成果の概要が公開されています。

N-heterocyclic carbene- and organic photoredox-catalysed meta-selective acylation of electron-rich arenes

Yamato Goto, Masaki Sano, Yuto Sumida, Hirohisa Ohmiya

Nat. Synth (2023)

DOI:doi.org/10.1038/s44160-023-00378-4

研究室を主宰されている大宮 寛久教授より後藤さんについてコメントを頂戴いたしました!

後藤くんは、学部〜M1にかけて研究が思うように進まない時期を経験、ある反応の副生成物としてメタ体を発見、その後、化学収率向上および再現性に大苦戦、審査プロセスでの追加実験(触媒サイクルの計算など)で大奮闘と、よくある出来事を立派に乗り越えました。この研究を通じて、大きく成長したはずです。博士後期課程に進学する予定ですので、今後のさらなる活躍を楽しみにしていますね。

今回は、スポットライトリサーチムービーも撮影させていただきました。それではムービーとあわせて記事を御覧ください!

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

多置換芳香環は医薬品や機能性材料等に含まれる基本骨格の一つです。そのため、芳香環を官能基化する手法はこれまで広く開発されてきました。Friedel-Crafts反応に代表される芳香族求電子置換反応は、芳香環上の電子供与性置換基からみてオルト-パラの位置で起こります。そのため、メタ位での反応は困難とされてきました(図1上段)。このような背景のもと、遷移金属触媒を用いた、電子豊富芳香環のメタ位選択的な反応開発が近年盛んに行われています。しかし、これら遷移金属触媒を用いる反応は、芳香環上に複雑な配向基や嵩高い置換基を導入した芳香族化合物を原料として用いる必要がありました。

図1. フリーデル・クラフツ反応と本研究成果の比較

今回、N-ヘテロ環カルベン触媒と光酸化還元触媒を協働的に用いることで、青色LED照射下、電子豊富芳香環のアシル化が完全なメタ選択性で進行することを見出しました(図1下段)。触媒サイクルにあるように反応のポイントは、カルボン酸誘導体とNHC触媒との交換により脱離したアゾリドアニオンが、電子豊富芳香環の一電子酸化により生じるラジカルカチオンのパラ位に求核付加する点です(図2)。

図2. 触媒サイクル

量子化学計算の手法を用いて、ラジカルカチオンの電荷密度を求めたところ、パラ位のカチオン性が高いことが確認されました(図3左)。そして求核付加後に生成するアルキルラジカルは、メタ位にスピンが集中しており、オルト-パラ位よりもラジカルとして高い反応性を発現している点が特徴です(図3右)。これら二つの触媒サイクルを能動的に精密制御することで、メタ位アシル化という未踏の化学反応を実現しました。

図3. 量子化学計算による機構研究

本手法は,1)容易に入手可能で単純かつ電子豊富な芳香族化合物を利用できる,2)穏和な反応条件で実施できるため,官能基許容性に優れているという有機合成化学的な利点を持ちます。したがって,これまで困難であった60種類以上の芳香族化合物をつくりだすことができました(図4)。分子内に多数の官能基を有する複雑な医薬品や天然物のアシル化反応も実現しました。

図4. 基質適用範囲

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

添加物であるセシウム塩の調製です。文献上の合成法がざっくりしており思いの外うまく作れなかったので、反応条件から精製条件まで一新しました。また生成物のメタ位置換を確認するために、今回の生成物のプロトンNMRスペクトルをくまなく解析しました。このおかげで芳香族領域のカップリングには非常に敏感になりました。

さらに量子化学計算を用いた反応機構解析では、朝から晩まで計算用PCと睨めっこして、一つ一つの素過程のエネルギー変化を明らかにしました。特に触媒が絡んでくる工程は驚くほどエラーが出て頭を抱えましたが、順を追って丁寧に計算し直すことで、触媒サイクル全体のエネルギーポテンシャル図を完成させることができました。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

同じ条件で反応をかけようとしても再現が取れない時期が続いたことです。あまりにも長かったため、自分の手技がよくないのか?という根拠のないネガティブ感情に襲われそうになった時もありましたが、根気強く検討を続けた結果、添加物という着想に至りました。ある日、何気なく反応の経時変化を追ってみたところ、反応初期段階で全く生成物ができておらず、反応開始後、数時間たってからようやく徐々に生成物が観られ始めるという奇妙な結果に遭遇しました。これは、時間経過で徐々に分解していった基質から生じるアゾリドイオンの濃度上昇と関係があるのだろうと予想し、アゾリド塩を合成し添加してみたところ、経時変化プロットは鰻登りという結果になり、再現も容易に取れるようになりました。

Q4. 将来は化学とどう関わっていきたいですか?

日常的にあるネタのタネを自由に漁れるアカデミアという業界は、とても魅力的に感じています。これまでの常識を打ち破る,つまり教科書を書き換えるような発見をすることが研究の真骨頂です。これまで数多くの刺激的な論文に出会ってきましたが,今回の発見も見つかった当時の興奮は忘れられません。一方で、科学の面白さを伝えられるような学校の教師にも興味があります。高校当時の化学教師の姿が非常に印象深く、憧れの存在でもあるので、そういった存在になってみたい、こんなキャリアもいいかなと考えています。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

ここまで読んでいただきありがとうございます。博士後期課程は大宮教授の京都大学への異動に伴い、 京都大学大学院薬学研究科に編入学したいと思っています。そのため、これからも学会等でお会いすることがあるかと思いますが、その際は「ケムステを見た!」と言っていただければ嬉しいです。お互いに持ちネタをぶつけ合いましょう。

最後になりますが、日々の研究に熱心にご指導いただいた大宮先生、隅田先生、夜遅くまで実験を手伝ってくれた佐野君に、この場をお借りして感謝申し上げます。

研究者の略歴

名前 : 後藤 大和 (ごとう やまと)

所属 : 金沢大学 大学院医薬保健学総合研究科創薬科学専攻 博士前期課程2年

研究室 : 大宮 寛久 研究室 (特別研究学生)

研究テーマ : N-ヘテロ環状カルベン触媒と光酸化還元触媒を協働的に用いた芳香族官能基化反応の開発

関連リンク

Avatar photo

Zeolinite

投稿者の記事一覧

ただの会社員です。某企業で化学製品の商品開発に携わっています。社内でのデータサイエンスの普及とDX促進が個人的な野望です。

関連記事

  1. 第30回ケムステVシンポ「世界に羽ばたく日本の化学研究」ーAld…
  2. 2018年1月20日:ケムステ主催「化学業界 企業研究セミナー」…
  3. 「日本研究留学記: オレフィンの内部選択的ヒドロホルミル化触媒」…
  4. Callipeltosideの全合成と構造訂正
  5. 複雑天然物Communesinの新規類縁体、遺伝子破壊実験により…
  6. ノーベル賞いろいろ
  7. 抗ガン天然物インゲノールの超短工程全合成
  8. カーボンナノベルト合成初成功の舞台裏 (2)

注目情報

ピックアップ記事

  1. パオロ・メルキオーレ Paolo Melchiorre
  2. 有機合成化学協会誌2022年6月号:プラスチック変換・生体分子変換・ラジカル反応・ガタスタチンG2・オリゴシラン・縮環ポルフィリン誘導体
  3. CAS SciFinder、革新的な新しいサイエンス・スマートAI機能を統合し、研究開発の効率化とイノベーションを促進
  4. プロ格闘ゲーマーが有機化学Youtuberをスポンサー!?
  5. 医薬各社、アルツハイマー病薬の開発進まず
  6. 【書籍】10分間ミステリー
  7. 製薬大手のロシュ、「タミフル」効果で05年売上高20%増
  8. 【ケムステSlackに訊いてみた①】有機合成を学ぶオススメ参考書を教えて!
  9. 卒論・修論にむけて〜わかりやすく伝わる文章を書こう!〜
  10. 第三回 北原武教授ー化学と生物の融合、ものつくり

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年9月
 123
45678910
11121314151617
18192021222324
252627282930  

注目情報

最新記事

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

第58回Vシンポ「天然物フィロソフィ2」を開催します!

第58回ケムステVシンポジウムの開催告知をさせて頂きます!今回のVシンポは、コロナ蔓延の年202…

第76回「目指すは生涯現役!ロマンを追い求めて」櫛田 創 助教

第76回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第75回「デジタル技術は化学研究を革新できるのか?」熊田佳菜子 主任研究員

第75回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第74回「理想的な医薬品原薬の製造法を目指して」細谷 昌弘 サブグループ長

第74回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第57回ケムステVシンポ「祝ノーベル化学賞!金属有機構造体–MOF」を開催します!

第57回ケムステVシンポは、北川 進 先生らの2025年ノーベル化学賞受賞を記念して…

櫛田 創 Soh Kushida

櫛田 創(くしだそう)は日本の化学者である。筑波大学 数理物質系 物質工学域・助教。専門は物理化学、…

細谷 昌弘 Masahiro HOSOYA

細谷 昌弘(ほそや まさひろ, 19xx年xx月xx日-)は、日本の創薬科学者である。塩野義製薬株式…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP