[スポンサーリンク]

化学者のつぶやき

3日やったらやめられない:独自配位子開発と応用

[スポンサーリンク]

キラルなα-カチオン性リン配位子を設計、合成し、Au触媒を用いた分子内ヒドロアリール化反応へ適用することで[6]ヘリセンの新規不斉合成が達成された。

α-カチオン性リン配位子

遷移金属触媒反応における配位子の重要性は高く、触媒の反応性を活かすも殺すも配位子次第である。今回はリン原子に直接カチオン性炭素置換基が結合したαカチオン性リン配位子について紹介する[1]

α-カチオン性リン配位子は、カチオン性置換基の強い誘起効果により金属に対し低い電子供与性をもつ。カチオン性置換基としてイミダゾリウム(1)、シクロプロペニウム(2)、ピリジニウム(3)やアミジニウム(4)をもつものが知られており、ジカチオン体(57)、トリカチオン体(8,9)も合成されている。Tolmanの電子的パラメータから、モノカチオン体の電子供与性はP(OPh)3と同等かそれより低く、ジカチオン体、トリカチオン体はさらに低い電子供与性をもつことが明らかになっている。

このような低い電子供与性をもつ配位子は金属に配位した際に高いπ-酸性をもつ金属錯体を形成する。この高いπ-酸性は、AuやPt触媒によるヒドロアリール化反応によって証明されている[2]。一般的に触媒的ヒドロアリール化の円滑な進行には触媒のπ-酸性の高さが重要となる。

実際、Au触媒を用いた10のヒドロアリール化反応では、配位子にP(OPh)3やPPh3を用いた場合と比べ、7aの活性がそれぞれ約20倍、500倍高く、α-カチオン性リン配位子をもつAu触媒のπ-酸性の高さが伺える。また、12の反応では、P(OPh)3やPPh3では7-exo環化体14が優先的に生成するのに対し、7aでは6-endo環化体13が選択的に得られる。論文ではこの選択性の変化も触媒のπ-酸性の高さに起因すると言及されている。

図1. α-カチオン性リン配位子

今回、ドイツのゲッティンゲン大学のAlcarazo教授らは、α-カチオン性リン配位子を不斉配位子へと展開し、Au触媒を用いた分子内不斉ヒドロアリール化反応による[6]ヘリセンの新規不斉合成に成功したので紹介する。

“Enantioselective Synthesis of [6]Carbohelicenes”

Gonzaĺez-Fernańdez, E.; Nicholls, L. D. M.; Schaaf, L. D.; Fares̀, C.; Lehmann, C. W.; Alcarazo M. J. Am. Chem. Soc. 2017, 139, 1428DOI: 10.1021/jacs.6b12443

論文著者の紹介

研究者:Manuel Alcarazo

研究者の経歴:
–2005         PhD, Instituto de Investigaciones Químicas (CSIC) (Prof. José M. Lassaletta)
2005–2008 Postdoctoral research, Max-Planck-Institut für Kohlenforschung (Prof. Alois Fürstner)
2009–2015 Independent Junior Group Leader at the Max-Planck-Institut für Kohlenforschung
2015–         Full Professor, Institute of Organic and Biomolecular Chemistry, University of Göttingen
研究内容:カチオン性配位子開発、新規反応剤開発

論文の概要

今回、Alcarazoらはキラル部位を導入したキラルα-カチオン性リン配位子を初めて開発し、それを用いたジアリールジアルキニルナフタレン15の分子内不斉ヒドロアリール化反応による[6]ヘリセンの不斉合成を達成した(図2)。

彼らはカチオン性部位にイミダゾリウムを、キラル部位としてTADDOL骨格をもつキラルα-カチオン性ホスフォナイト配位子L1を合成した。L1はシリカゲルや空気に対し比較的安定である。L1はAuClと容易に錯形成でき、その錯体のX線結晶構造解析からAu原子が配位子の不斉反応場中深くに存在することがわかった。実際にこの配位子をもつ金触媒存在下、15を用いた[6]ヘリセン10の不斉合成へと適用し、よい収率とエナンチオ選択性で種々のキラルヘリセン17を得ることに成功している。配位子の詳細な構造活性相関は論文を参照していただきたい。比較対照実験として、同じTADDOL部位をもつホスホラアミダイト18を用いた結果、反応が進行せず、配位子上のカチオン性置換基による反応促進効果が示されている。また、種々の機構解明実験から、中間体16からの二段階目のヒドロアリール化が不斉発現段階であることが示唆された。

このように、独自の配位子開発が高効率的なヘリセンの新規不斉合成を可能にした。彼ら独自のカチオン性置換基ではない点が残念ではあるが、多くの検討から行き着いた結果であろう。本成果は有機金属化学の大家、山本明夫先生の言葉を借りれば、「有機金属化学(配位子設計)、3日やったらやめられない[3]ことを示す例ではないか。

図2.キラルα-カチオン性リン配位子とそれを用いた金触媒による[6]ヘリセンの不斉合成

参考文献

  1. Alcarazo, M. Chem. Res. 2016, 49, 1797. DOI: 10.1021/acs.accounts.6b00262
  2. Carreras, J.; Gopakumar, G.; Gu, L.; Gimeno, A.; Linowski, P.; Petusǩova, J.; Thiel, W.; Alcarazo, M.; J. Am. Chem. Soc. 2013, 135, 18815. DOI: 10.1021/ja411146x

  3. 有機金属化学ー三日やったらやめられない、山本明夫 有機合成化学協会誌, Vol. 49 (1991) No. 1 P 63-70. DOI: 10.5059/yukigoseikyokaishi.49.63

関連書籍

[amazonjs asin=”480790857X” locale=”JP” title=”有機金属化学―基礎から触媒反応まで”]
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 女性科学者の卵を支援―「ロレアル・ユネスコ女性科学者 日本奨励賞…
  2. 植物毒素の全合成と細胞死におけるオルガネラの現象発見
  3. 環サイズを選択できるジアミノ化
  4. 化学エネルギーを使って自律歩行するゲル
  5. 有機アジド(4)ー芳香族アジド化合物の合成
  6. 【速報】2015年ノーベル化学賞は「DNA修復機構の解明」に!
  7. 細胞内で酵素のようにヒストンを修飾する化学触媒の開発
  8. 特許情報から読み解く大手化学メーカーの比較

注目情報

ピックアップ記事

  1. 2008年12月人気化学書籍ランキング
  2. 炭素をBNに置き換えると…
  3. 化学者にお勧めのノートPC
  4. ハワイの海洋天然物(+)-Waixenicin Aの不斉全合成
  5. ソラノエクレピンA (solanoeclepin A)
  6. 構造式から選ぶ花粉症のOTC医薬品
  7. ジャーナル編集ポリシーデータベース「Transpose」
  8. インドールの触媒的不斉ヒドロホウ素化反応の開発
  9. その置換基、パラジウムと交換しませんか?
  10. 【経験者に聞く】マテリアルズ・インフォマティクスの事業開発キャリアへの挑戦

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年2月
 12345
6789101112
13141516171819
20212223242526
2728  

注目情報

最新記事

二酸化マンガンの極小ナノサイズ化で次世代電池や触媒の性能を底上げ!

第649回のスポットライトリサーチは、東北大学大学院環境科学研究科(本間研究室)博士課程後期2年の飯…

日本薬学会第145年会 に参加しよう!

3月27日~29日、福岡国際会議場にて 「日本薬学会第145年会」 が開催されま…

TLC分析がもっと楽に、正確に! ~TLC分析がアナログからデジタルに

薄層クロマトグラフィーは分離手法の一つとして、お金をかけず、安価な方法として現在…

先端の質量分析:GC-MSおよびLC-MSデータ処理における機械学習の応用

キャラクタライゼーションの機械学習応用は、マテリアルズ・インフォマティクス(MI)およびラボオートメ…

原子半径・電気陰性度・中間体の安定性に起因する課題を打破〜担持Niナノ粒子触媒の協奏的触媒作用〜

第648回のスポットライトリサーチは、東京大学大学院工学系研究科(山口研究室)博士課程後期2年の松山…

リビングラジカル重合ガイドブック -材料設計のための反応制御-

概要高機能高分子材料の合成法として必須となったリビングラジカル重合を、ラジカル重合の基礎から、各…

高硬度なのに高速に生分解する超分子バイオプラスチックのはなし

Tshozoです。これまでプラスチックの選別の話やマイクロプラスチックの話、およびナノプラスチッ…

新発想の分子モーター ―分子機械の新たなパラダイム―

第646回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機反応論研究室 助教の …

大人気の超純水製造装置を組み立ててみた

化学・生物系の研究室に欠かせない超純水装置。その中でも最も知名度が高いのは、やはりメルクの Mill…

Carl Boschの人生 その11

Tshozoです。間が空きましたが前回の続きです。時系列が前後しますが窒素固定の開発を始めたころ、B…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP