[スポンサーリンク]

化学者のつぶやき

3日やったらやめられない:独自配位子開発と応用

[スポンサーリンク]

キラルなα-カチオン性リン配位子を設計、合成し、Au触媒を用いた分子内ヒドロアリール化反応へ適用することで[6]ヘリセンの新規不斉合成が達成された。

α-カチオン性リン配位子

遷移金属触媒反応における配位子の重要性は高く、触媒の反応性を活かすも殺すも配位子次第である。今回はリン原子に直接カチオン性炭素置換基が結合したαカチオン性リン配位子について紹介する[1]

α-カチオン性リン配位子は、カチオン性置換基の強い誘起効果により金属に対し低い電子供与性をもつ。カチオン性置換基としてイミダゾリウム(1)、シクロプロペニウム(2)、ピリジニウム(3)やアミジニウム(4)をもつものが知られており、ジカチオン体(57)、トリカチオン体(8,9)も合成されている。Tolmanの電子的パラメータから、モノカチオン体の電子供与性はP(OPh)3と同等かそれより低く、ジカチオン体、トリカチオン体はさらに低い電子供与性をもつことが明らかになっている。

このような低い電子供与性をもつ配位子は金属に配位した際に高いπ-酸性をもつ金属錯体を形成する。この高いπ-酸性は、AuやPt触媒によるヒドロアリール化反応によって証明されている[2]。一般的に触媒的ヒドロアリール化の円滑な進行には触媒のπ-酸性の高さが重要となる。

実際、Au触媒を用いた10のヒドロアリール化反応では、配位子にP(OPh)3やPPh3を用いた場合と比べ、7aの活性がそれぞれ約20倍、500倍高く、α-カチオン性リン配位子をもつAu触媒のπ-酸性の高さが伺える。また、12の反応では、P(OPh)3やPPh3では7-exo環化体14が優先的に生成するのに対し、7aでは6-endo環化体13が選択的に得られる。論文ではこの選択性の変化も触媒のπ-酸性の高さに起因すると言及されている。

図1. α-カチオン性リン配位子

今回、ドイツのゲッティンゲン大学のAlcarazo教授らは、α-カチオン性リン配位子を不斉配位子へと展開し、Au触媒を用いた分子内不斉ヒドロアリール化反応による[6]ヘリセンの新規不斉合成に成功したので紹介する。

“Enantioselective Synthesis of [6]Carbohelicenes”

Gonzaĺez-Fernańdez, E.; Nicholls, L. D. M.; Schaaf, L. D.; Fares̀, C.; Lehmann, C. W.; Alcarazo M. J. Am. Chem. Soc. 2017, 139, 1428DOI: 10.1021/jacs.6b12443

論文著者の紹介研究者:Manuel Alcarazo

研究者の経歴:
–2005         PhD, Instituto de Investigaciones Químicas (CSIC) (Prof. José M. Lassaletta)
2005–2008 Postdoctoral research, Max-Planck-Institut für Kohlenforschung (Prof. Alois Fürstner)
2009–2015 Independent Junior Group Leader at the Max-Planck-Institut für Kohlenforschung
2015–         Full Professor, Institute of Organic and Biomolecular Chemistry, University of Göttingen
研究内容:カチオン性配位子開発、新規反応剤開発

論文の概要

今回、Alcarazoらはキラル部位を導入したキラルα-カチオン性リン配位子を初めて開発し、それを用いたジアリールジアルキニルナフタレン15の分子内不斉ヒドロアリール化反応による[6]ヘリセンの不斉合成を達成した(図2)。

彼らはカチオン性部位にイミダゾリウムを、キラル部位としてTADDOL骨格をもつキラルα-カチオン性ホスフォナイト配位子L1を合成した。L1はシリカゲルや空気に対し比較的安定である。L1はAuClと容易に錯形成でき、その錯体のX線結晶構造解析からAu原子が配位子の不斉反応場中深くに存在することがわかった。実際にこの配位子をもつ金触媒存在下、15を用いた[6]ヘリセン10の不斉合成へと適用し、よい収率とエナンチオ選択性で種々のキラルヘリセン17を得ることに成功している。配位子の詳細な構造活性相関は論文を参照していただきたい。比較対照実験として、同じTADDOL部位をもつホスホラアミダイト18を用いた結果、反応が進行せず、配位子上のカチオン性置換基による反応促進効果が示されている。また、種々の機構解明実験から、中間体16からの二段階目のヒドロアリール化が不斉発現段階であることが示唆された。

このように、独自の配位子開発が高効率的なヘリセンの新規不斉合成を可能にした。彼ら独自のカチオン性置換基ではない点が残念ではあるが、多くの検討から行き着いた結果であろう。本成果は有機金属化学の大家、山本明夫先生の言葉を借りれば、「有機金属化学(配位子設計)、3日やったらやめられない[3]ことを示す例ではないか。

図2.キラルα-カチオン性リン配位子とそれを用いた金触媒による[6]ヘリセンの不斉合成

参考文献

  1. Alcarazo, M. Chem. Res. 2016, 49, 1797. DOI: 10.1021/acs.accounts.6b00262
  2. Carreras, J.; Gopakumar, G.; Gu, L.; Gimeno, A.; Linowski, P.; Petusǩova, J.; Thiel, W.; Alcarazo, M.; J. Am. Chem. Soc. 2013, 135, 18815. DOI: 10.1021/ja411146x

  3. 有機金属化学ー三日やったらやめられない、山本明夫 有機合成化学協会誌, Vol. 49 (1991) No. 1 P 63-70. DOI: 10.5059/yukigoseikyokaishi.49.63

関連書籍

山口 研究室

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 高速原子間力顕微鏡による溶解過程の中間状態の発見
  2. 細胞の中を旅する小分子|第一回
  3. いつも研究室で何をしているの?【一問一答】
  4. Dead Endを回避せよ!「全合成・極限からの一手」④(解答編…
  5. Baird芳香族性、初のエネルギー論
  6. 温故知新ケミストリー:シクロプロペニルカチオンを活用した有機合成…
  7. 高分子鎖デザインがもたらすポリマーサイエンスの再創造
  8. 誤った科学論文は悪か?

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 演習で学ぶ有機反応機構―大学院入試から最先端まで
  2. Nsアミン誘導体
  3. ジョージ・オラー George Andrew Olah
  4. 2つのアシロイン縮合
  5. 元素のふしぎ展に行ってきました
  6. 化学探偵Mr.キュリー8
  7. 日本電子の米国法人、有機物を非破壊検出できるイオン源を開発
  8. 2002年ノーベル化学賞『生体高分子の画期的分析手法の開発』
  9. 有機合成化学協会誌2018年3月号:π造形科学・マグネシウムカルベノイド・Darzens反応・直接的触媒的不斉アルキニル化・光環化付加反応
  10. マーティン・バーク Martin D. Burke

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

電気化学ことはじめ(1) 何が必要なの??

化学の中で酸化還元反応というのは非常によく出てくるトピックであり、高校でも水の電気分解から電気化学系…

【書籍】電気化学インピーダンス 数式と計算で理解する基礎理論

(↓kindle版)概要インピーダンス測定の結果をいかに解釈すべきか.その理…

国際化学オリンピック、日本の高校生4名「銀」獲得

文部科学省は2020年7月31日、オンラインで開催された「第52回国際化学オリンピック」に参加した高…

有機合成化学協会誌2020年8月号:E2212製法・ヘリセン・炭素架橋オリゴフェニレンビニレン・ジケトホスファニル・水素結合性分子集合体

有機合成化学協会が発行する有機合成化学協会誌、2020年8月号がオンライン公開されました。今回は担当…

第八回ケムステVシンポジウム「有機無機ハイブリッド」を開催します!

夏真っ盛りですね。某ウイルスのもろもろに目を奪われがちですが、この季節は熱中症にも気をつけましょう。…

巧みに設計されたホウ素化合物と可視光からアルキルラジカルを発生させる

第268回のスポットライトリサーチは、金沢大学医薬保健研究域薬学系(大宮研究室)の佐藤 由季也(さと…

第111回―「予防・診断に有効なナノバイオセンサーと太陽電池の開発」Ted Sargent教授

第111回の海外化学者インタビューは、Ted Sargent教授です。トロント大学電気・計算機工学科…

アレノフィルを用いるアレーンオキシドとオキセピンの合成

脱芳香族化を伴う直接的な酸化により芳香族化合物からアレーンオキシドとオキセピンを合成する手法が開発さ…

Chem-Station Twitter

PAGE TOP