[スポンサーリンク]

化学者のつぶやき

コランニュレンの安定結合を切る

[スポンサーリンク]

 

少し前のものですが今回紹介する研究は、「多環芳香族炭化水素コラニュレンの安定な炭素ー炭素結合をぶったぎってしまった」話について。論文はこちら。

 

“Iridium-Catalyzed Reductive Carbon–Carbon Bond Cleavage Reaction on a Curved Pyridylcorannulene Skeleton”

Tashiro, S.; Yamada, M.; Shionoya, M. Angew. Chem. Int. Ed. 2015, 54, 5351. DOI: 10.1002/anie.201500819

 

折角なのでまずはコランニュレンから説明してみましょう。

 

コランニュレンってなに?

コランニュレン(コラヌレン, corannulene)は1966年にLawtonとBarthによって初めて合成されました[1]。コランニュレンの共鳴構造は図1左のように描くことができ、中心に芳香環をもつアヌレン(内側はシクロペンタジエニルアニオン、外側は[15]アヌレニルカチオン)とみなすことができます。この構造から、中心(心臓)を表すラテン語の「cor」と「annulene」を組み合わせた「corannulene」と名付けられました。当時、コラニュレンが安定に存在する主な理由を共鳴安定化によるものだと考えられていましたが、近年の理論計算によるとこの共鳴安定化の寄与はさほど大きくないことがわかっています[2]

さて、コラニュレンの構造は、フラーレン(C60)の最小部分構造であり、X線結晶構造解析によりボウル状であることが確認されています[3]。コラニュレンの4種類の炭素-炭素結合は車輪の構成要素になぞらえて「hub」、「spoke」、「flank」、「rim」と呼ばれ、湾曲構造に起因して各々の結合の反応性が異なります 。 (図 1 右)。

 

2015-06-17_02-39-27

図1. LawtonとBarthが提唱した共鳴構造(左)、結合の名前と結合距離(右)

 

コランニュレンの各結合の反応性の相違

各々の結合の性質と反応性の違いは以下のとおり(図2)。このように同じ炭素ー炭素結合でも、4種類の結合の中で一番結合長が長く、単結合性の強い結合であり、これまでにfalnk結合選択的に反応している例はまだ報告されておらず、最も安定であるといえます。

 

 

2015-06-17_02-40-36

図2. それぞれの結合の性質

 

本題に入ると、今回の東京大学の塩谷教授らはコラニュレンのflank結合選択的な結合開裂を達成しています。では如何にして結合を切ったのか。中身をチラッと見て行きましょう。

 

2­–ピリジルコラニュレン骨格の開裂

使った分子はコランニュレンにピリジンが結合している2–ピリジルコラニュレン。これを触媒量の塩化イリジウム(III)存在下、エチレングリコール溶媒中、マイクロウエーブで30分間、250 °Cで加熱することで、flank結合が選択的に開裂しオレフィン部分が還元された化合物2を得ました(図2)。その構造はX線結晶構造解析によって確認され、湾曲していない、平面状のbenzo[ghi]fluoranthene骨格へ変わっているのがわかります。

イリジウム触媒によるコラニュレンのflank結合選択的な開裂反応とX線結晶構造 (2)

イリジウム触媒によるコラニュレンのflank結合選択的な開裂反応とX線結晶構造 (2)

 

想定反応機構

想定されている反応機構を以下に示します(図 3)。本反応は大きく分けて3つの段階から構成されています。すなわち、

①ポリオールプロセスによるイリジウムの還元

②flank結合の酸化的付加

③オレフィン部位の還元とプロトン化

である。

 

2015-06-17_02-42-17

図3. 想定反応機構 (X = solvent, Cl, H, y = 1–3)

 

① ポリオールプロセスによる低原子価イリジウムの生成

触媒となるイリジウム種の酸化状態に関してX線光電子線分光(XPS)を用いて調査しています。2–ピリジルコラニュレンを除いて反応を行い、得られたサンプルをXPS解析した結果、0価もしくはI価のイリジウムの生成が確認されました

 

② flank結合の酸化的付加

①のポリオールプロセスにより生成した低原子価イリジウム種へflank結合が酸化的付加することにより中間体Iが生成していると推定さしています。この段階はピリジル基が配向基として作用することと、5員環と7員環からなるメタラサイクルの形成によりひずみが解消することによって促進されると考えられます。

 

③ オレフィン部位の還元とプロトン化

想定機構の最終段階は、オレフィン部分の還元とプロトン化による化合物2の生成。幾つかの還元経路が考えられますが、イリジウム上のヒドリドによる還元とポリオールプロセスで系中に生じている塩酸によりプロトン化されることで化合物2が生成しています。反応により生成した高酸化数のイリジウム種はもう一度①のポリオールプロセスにより還元されます。もしくは、ヒドリド配位子がアルキル配位子と還元的脱離する際に低酸化数のイリジウム種が再生します。スチレンを用いたモデル反応においても、スチレンが還元されたエチルベンゼンが生成したことから、本反応条件でアルケンを還元することができることを確認しています(図4)。

2015-06-17_02-43-01

図4 モデル反応

まとめ

今回、塩谷教授らはイリジウム触媒と配向基を用いてコラニュレン骨格の高収率かつ位置選択的な炭素–炭素結合開裂に成功しました。本反応は初めてflank結合の活性化を達成した例となります。が、しかし、これは狙った反応でなく予想外の反応ですよね。つまりピリジンを配向基としてrim結合のC–H結合活性化(メタル化)しようと思ったらこんなのできちゃった。ということっぽいです。[4]概して、そういう方が反応は面白いものですが。

なにはともあれ、未だ報告例の少ない芳香族炭化水素の位置選択的な結合開裂反応であり、これをきっかけにして多環芳香族炭化水素の自在な炭素炭素結合開裂反応が開発されていくことを期待したいと思います。

ちなみに話はずれますが、“安定な結合ぶった切るシリーズ”は以下のとおり。

 

参考文献

  1. Barth, W. E.; Lawton, R. G. J. Am. Chem. Soc. 1966, 88, 380. DOI: 10.1021/ja00954a049
  2. Monaco, G.; Scott, L. T.; Zanasi, R. J. Phys. Chem. A 2008, 112, 8136. DOI: 10.1021/jp8038779
  3. Hanson, J. C.; Nordman, C. E. Acta Crystallogr. 1976, B32, 1147.
  4.  Yamada, M.; Tashiro, S.; Miyake, R.; Shionoya, M. Dalton Trans 2013, 42, 3300. DOI: 10.1039/C2DT32883F

 

 

bona

bona

投稿者の記事一覧

愛知で化学を教えています。よろしくお願いします。

関連記事

  1. 米国へ講演旅行へ行ってきました:Part II
  2. 化学のうた
  3. Dead Endを回避せよ!「全合成・極限からの一手」③(解答編…
  4. 化学者のためのエレクトロニクス入門⑤ ~ディスプレイ分野などで活…
  5. 力を加えると変色するプラスチック
  6. 金属を使わない触媒的水素化
  7. メソポーラスシリカ(2)
  8. 天然イミンにインスパイアされたペプチド大環状化反応

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 分子の磁石 “化学コンパス” ~渡り鳥の磁場観測メカニズム解明にむけて~
  2. 投票!2016年ノーベル化学賞は誰の手に??
  3. カスガマイシン (kasugamycin)
  4. 個性あるTOCその③
  5. おまえら英語よりもタイピングやろうぜ ~中級編~
  6. コニア エン反応 Conia–Ene Reaction
  7. Pallambins A-Dの不斉全合成
  8. サリチル酸 (salicylic acid)
  9. 「超分子」でナノホース合成 人工毛細血管に道
  10. マーデルング インドール合成 Madelung Indole Synthesis

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2015年6月
« 5月   7月 »
1234567
891011121314
15161718192021
22232425262728
2930  

注目情報

注目情報

最新記事

KISTECおもちゃレスキュー こども救急隊・こども鑑識隊

おもちゃレスキューに君も入隊しよう!大事なおもちゃがこわれたら、どうしますか? …

ポンコツ博士研究員の海外奮闘録 〜コロナモラトリアム編〜

事実は小説より奇なり。「博士系なろう」という新ジャンルの開拓を目指し,博士を経て得られた文章力を全力…

乙卯研究所 研究員募集

公益財団法人乙卯研究所から研究員募集のお知らせです。自分自身でテーマを決めて好きな有機化学の研究…

SNSコンテスト企画『集まれ、みんなのラボのDIY!』

先日公開されたこちらのケムステ記事と動画、皆さんご覧になって頂けましたでしょうか?https…

可視光レドックス触媒と有機蓄光の融合 〜大気安定かつ高性能な有機蓄光の実現〜

第351回のスポットライトリサーチは、九州大学 安達・中野谷研究室 で研究をされていた陣内 和哉さん…

可視光全域を利用できるレドックス光増感剤

東京工業大学 理学院 化学系の玉置悠祐助教、入倉茉里大学院生および石谷治教授は、新たに合成したオスミ…

【ジーシー】新卒採用情報(2023卒)

弊社の社是「施無畏」は、「相手の身になって行動する」といった意味があります。これを具現化することで存…

有機合成のための新触媒反応101

(さらに…)…

化学者のためのエレクトロニクス講座~電解ニッケルめっき編~

この化学者のためのエレクトロニクス講座では半導体やその配線技術、フォトレジストやOLEDなど、エレク…

その病気、市販薬で治せます

(さらに…)…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP