[スポンサーリンク]

化学者のつぶやき

コランニュレンの安定結合を切る

[スポンサーリンク]

 

少し前のものですが今回紹介する研究は、「多環芳香族炭化水素コラニュレンの安定な炭素ー炭素結合をぶったぎってしまった」話について。論文はこちら。

 

“Iridium-Catalyzed Reductive Carbon–Carbon Bond Cleavage Reaction on a Curved Pyridylcorannulene Skeleton”

Tashiro, S.; Yamada, M.; Shionoya, M. Angew. Chem. Int. Ed. 2015, 54, 5351. DOI: 10.1002/anie.201500819

 

折角なのでまずはコランニュレンから説明してみましょう。

 

コランニュレンってなに?

コランニュレン(コラヌレン, corannulene)は1966年にLawtonとBarthによって初めて合成されました[1]。コランニュレンの共鳴構造は図1左のように描くことができ、中心に芳香環をもつアヌレン(内側はシクロペンタジエニルアニオン、外側は[15]アヌレニルカチオン)とみなすことができます。この構造から、中心(心臓)を表すラテン語の「cor」と「annulene」を組み合わせた「corannulene」と名付けられました。当時、コラニュレンが安定に存在する主な理由を共鳴安定化によるものだと考えられていましたが、近年の理論計算によるとこの共鳴安定化の寄与はさほど大きくないことがわかっています[2]

さて、コラニュレンの構造は、フラーレン(C60)の最小部分構造であり、X線結晶構造解析によりボウル状であることが確認されています[3]。コラニュレンの4種類の炭素-炭素結合は車輪の構成要素になぞらえて「hub」、「spoke」、「flank」、「rim」と呼ばれ、湾曲構造に起因して各々の結合の反応性が異なります 。 (図 1 右)。

 

2015-06-17_02-39-27

図1. LawtonとBarthが提唱した共鳴構造(左)、結合の名前と結合距離(右)

 

コランニュレンの各結合の反応性の相違

各々の結合の性質と反応性の違いは以下のとおり(図2)。このように同じ炭素ー炭素結合でも、4種類の結合の中で一番結合長が長く、単結合性の強い結合であり、これまでにfalnk結合選択的に反応している例はまだ報告されておらず、最も安定であるといえます。

 

 

2015-06-17_02-40-36

図2. それぞれの結合の性質

 

本題に入ると、今回の東京大学の塩谷教授らはコラニュレンのflank結合選択的な結合開裂を達成しています。では如何にして結合を切ったのか。中身をチラッと見て行きましょう。

 

2­–ピリジルコラニュレン骨格の開裂

使った分子はコランニュレンにピリジンが結合している2–ピリジルコラニュレン。これを触媒量の塩化イリジウム(III)存在下、エチレングリコール溶媒中、マイクロウエーブで30分間、250 °Cで加熱することで、flank結合が選択的に開裂しオレフィン部分が還元された化合物2を得ました(図2)。その構造はX線結晶構造解析によって確認され、湾曲していない、平面状のbenzo[ghi]fluoranthene骨格へ変わっているのがわかります。

イリジウム触媒によるコラニュレンのflank結合選択的な開裂反応とX線結晶構造 (2)

イリジウム触媒によるコラニュレンのflank結合選択的な開裂反応とX線結晶構造 (2)

 

想定反応機構

想定されている反応機構を以下に示します(図 3)。本反応は大きく分けて3つの段階から構成されています。すなわち、

①ポリオールプロセスによるイリジウムの還元

②flank結合の酸化的付加

③オレフィン部位の還元とプロトン化

である。

 

2015-06-17_02-42-17

図3. 想定反応機構 (X = solvent, Cl, H, y = 1–3)

 

① ポリオールプロセスによる低原子価イリジウムの生成

触媒となるイリジウム種の酸化状態に関してX線光電子線分光(XPS)を用いて調査しています。2–ピリジルコラニュレンを除いて反応を行い、得られたサンプルをXPS解析した結果、0価もしくはI価のイリジウムの生成が確認されました

 

② flank結合の酸化的付加

①のポリオールプロセスにより生成した低原子価イリジウム種へflank結合が酸化的付加することにより中間体Iが生成していると推定さしています。この段階はピリジル基が配向基として作用することと、5員環と7員環からなるメタラサイクルの形成によりひずみが解消することによって促進されると考えられます。

 

③ オレフィン部位の還元とプロトン化

想定機構の最終段階は、オレフィン部分の還元とプロトン化による化合物2の生成。幾つかの還元経路が考えられますが、イリジウム上のヒドリドによる還元とポリオールプロセスで系中に生じている塩酸によりプロトン化されることで化合物2が生成しています。反応により生成した高酸化数のイリジウム種はもう一度①のポリオールプロセスにより還元されます。もしくは、ヒドリド配位子がアルキル配位子と還元的脱離する際に低酸化数のイリジウム種が再生します。スチレンを用いたモデル反応においても、スチレンが還元されたエチルベンゼンが生成したことから、本反応条件でアルケンを還元することができることを確認しています(図4)。

2015-06-17_02-43-01

図4 モデル反応

まとめ

今回、塩谷教授らはイリジウム触媒と配向基を用いてコラニュレン骨格の高収率かつ位置選択的な炭素–炭素結合開裂に成功しました。本反応は初めてflank結合の活性化を達成した例となります。が、しかし、これは狙った反応でなく予想外の反応ですよね。つまりピリジンを配向基としてrim結合のC–H結合活性化(メタル化)しようと思ったらこんなのできちゃった。ということっぽいです。[4]概して、そういう方が反応は面白いものですが。

なにはともあれ、未だ報告例の少ない芳香族炭化水素の位置選択的な結合開裂反応であり、これをきっかけにして多環芳香族炭化水素の自在な炭素炭素結合開裂反応が開発されていくことを期待したいと思います。

ちなみに話はずれますが、“安定な結合ぶった切るシリーズ”は以下のとおり。

 

参考文献

  1. Barth, W. E.; Lawton, R. G. J. Am. Chem. Soc. 1966, 88, 380. DOI: 10.1021/ja00954a049
  2. Monaco, G.; Scott, L. T.; Zanasi, R. J. Phys. Chem. A 2008, 112, 8136. DOI: 10.1021/jp8038779
  3. Hanson, J. C.; Nordman, C. E. Acta Crystallogr. 1976, B32, 1147.
  4.  Yamada, M.; Tashiro, S.; Miyake, R.; Shionoya, M. Dalton Trans 2013, 42, 3300. DOI: 10.1039/C2DT32883F

 

 

Avatar photo

bona

投稿者の記事一覧

愛知で化学を教えています。よろしくお願いします。

関連記事

  1. 学会ムラの真実!?
  2. 落葉の化学~「コロ助の科学質問箱」に捧ぐ
  3. “CN7-“アニオン
  4. 有機化学者のラブコメ&ミステリー!?:「ラブ・ケミスト…
  5. 新規化合物データチェックリストとWord整形プログラムver2
  6. どろどろ血液でもへっちゃら
  7. 超分子化学と機能性材料に関する国際シンポジウム2018
  8. 還元された酸化グラフェン(その1)

注目情報

ピックアップ記事

  1. 日本化学界の英文誌 科学分野 ウェッブ公開の世界最速実現
  2. ステファン・カスケル Stefan Kaskel
  3. ピーター・リードレイ Peter Leadlay
  4. アスタキサンチン (astaxanthin)
  5. AIと融合するバイオテクノロジー|越境と共創がもたらす革新的シングルセル解析
  6. 材料開発の変革をリードするスタートアップのプロダクト開発ポジションとは?
  7. 【4月開催】 【第二期 マツモトファインケミカル技術セミナー開催】 題目:有機金属化合物 オルガチックスとは~基礎技術(構造、反応性)の紹介~
  8. 抗リーシュマニア活性を有するセスキテルペンShagene AおよびBの全合成研究
  9. ジョージ・スミス George P Smith
  10. フェノールフタレイン ふぇのーるふたれいん phenolphthalein

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2015年6月
1234567
891011121314
15161718192021
22232425262728
2930  

注目情報

最新記事

有馬温泉で鉄イオン水溶液について学んできた【化学者が行く温泉巡りの旅】

有馬温泉の金泉は、塩化物濃度と鉄濃度が日本の温泉の中で最も高い温泉で、黄褐色を呈する温泉です。この記…

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

第58回Vシンポ「天然物フィロソフィ2」を開催します!

第58回ケムステVシンポジウムの開催告知をさせて頂きます!今回のVシンポは、コロナ蔓延の年202…

第76回「目指すは生涯現役!ロマンを追い求めて」櫛田 創 助教

第76回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第75回「デジタル技術は化学研究を革新できるのか?」熊田佳菜子 主任研究員

第75回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第74回「理想的な医薬品原薬の製造法を目指して」細谷 昌弘 サブグループ長

第74回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第57回ケムステVシンポ「祝ノーベル化学賞!金属有機構造体–MOF」を開催します!

第57回ケムステVシンポは、北川 進 先生らの2025年ノーベル化学賞受賞を記念して…

櫛田 創 Soh Kushida

櫛田 創(くしだそう)は日本の化学者である。筑波大学 数理物質系 物質工学域・助教。専門は物理化学、…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP