[スポンサーリンク]

化学者のつぶやき

雷神にそっくり?ベンゼン環にカミナリ走る

[スポンサーリンク]

 

ベンゼンテトラアニオン誘導体の合成に成功,芳香族化合物の理解 深まる.

 

日本を代表する絵画のひとつ、江戸時代の画家である俵屋宗達による代表的作品「風神雷神図屏風」。ふと思い起こして、見比べてみると、あら不思議。フェロセン太鼓にも見えるし、手足の指5本ずつだし、これはネットスラングで言うところの 完 全 に 一 致 というやつでは。そっくり!?

冗談はさておき。この「雷神分子仮名)」の胴体にあたる中央の炭素六員環にご注目。金属元素のイットリウムに挟まれて、よくよく考えてみると電荷がおもしろげなことになっています。テトラアニオン(四価陰イオン)になっており、数えてみるとパイ電子はちょうど10個です。10は4で割り切れないため、ヒュッケル則を満たすことになりますが、はてさて実際に作って調べてみると芳香族になるのでしょうか。

GREEN2013raijin5.png

ベンゼンテトラアニオン

ベンゼンテトラアニオンは芳香族性を持つのか、合成・単離・結晶構造解析の結果[1]はいかに?

イギリスの歴史的に有名な科学者、かのマイケル・ファラデーが、鯨油を化学変化させベンゼンを単離したのは1825年のこと。月日は流れ、それ以来ずっと、芳香族性(aromacity)は化学の広い分野にわたって基礎となる重要な概念のひとつでした。

実際、芳香族性の話題は、大学学部教育おそらく1年めの化学で登場する重要なトピックのひとつと言ってもよいでしょう。学ぶであろう内容のうち、パイ電子の個数が4で割って2余ることを要求するヒュッケル則は、芳香族性を議論するためのよく使われる指標であり、シクロペンタジエニルアニオンシクロヘプタチエニルカチオンなど、正負の電荷を帯びたイオンでもしっかりとあてはまります。

さて、雷神のようなかたちでイットリウムが配位した冒頭のベンゼンテトラアニオン誘導体。目をつけるべきところは、雷のように「電子が走っているか」にあります。ヒュッケル則が満たされていても、電子が非局在化して、炭素六員環の上をぐるぐる回っていなければ、芳香族性を持ちません。

 

ベンゼンテトラアニオンは芳香族性を持つのか

環のすべてが炭素原子でできた芳香族化合物のうち、ベンゼンテトラアニオンは2013年[1]以前まで単離の例がなく、そのため芳香族性を持つかどうか、ほとんど検討されていませんでした。最近になってフェロセンジアミド配位子を使うと金属元素が芳香族炭化水素をサンドイッチのように挟み込むことができると2011年に判明[2]し、この性質を足がかりにして研究が展開され、冒頭の、雷神のようなかたちの分子が合成されました[1]。結晶も得られて、立体構造も解かれています[1]。

イットリウム原子について核磁気共鳴(nuclear magnetic resonance; NMR)スペクトルを調べてみると、ベンゼン環に配位させていない状態で370ppm、ベンゼン環に配位させて雷神のようなかたちの分子にすると189ppmでした。この数値が示唆するところによると、期待どおりベンゼンテトラアニオンとイットリウム原子で相互作用しているようです。密度汎関数法(density functional theory; DFT)で量子力学計算した結果も合わせて、期待どおり芳香族性を持つだろうと推論されています[1]。

GREEN2013raijin7.png

イットリウム89(89Y)の化学シフト(chemical shift)値

分子の構造」とは、「分子のかたち」はもちろん、広い意味で「分子の運動する様子」や「電子の分布」をも含む概念です。これらひとの目ではそのまま見ることのできない「分子の個性」が、どうにか工夫して見えたとき、わたしたちは、この世界に存在する多種多様な物質が持つ性質それぞれを支える本当の姿に迫ることができます。さながら、自然法則をすべる神様が、ちょっとだけ振り返り、こちらにほほえんでくれる、わけです。

GREEN2013kaminari3.png

こちらは神様というより鬼?宇宙人?電撃嫁?

巧妙な方法でベンゼンテトラアニオンの性質を垣間見ることができて、芳香族化合物一般の理解はさらに深まりました。

 

参考文献

[1] “A six-carbon 10p-electron aromatic system supported by group 3 metals.” Huang W et al. Nature Communication 2013 DOI: 10.1038/ncomms2473

[2] “Scandium arene inverted-sandwich complexes supported by a ferrocene diamide ligand.” Huang W et al. J. Am. Chem. Soc. 2011 DOI: 10.1021/ja204304f

 

Green

Green

投稿者の記事一覧

静岡で化学を教えています。よろしくお願いします。

関連記事

  1. フルオロホルムを用いた安価なトリフルオロメチル化反応の開発
  2. 第三回ケムステVシンポ「若手化学者、海外経験を語る」開催報告
  3. 化学研究ライフハック:ソーシャルブックマークを活用しよう!
  4. 顕微鏡で有機分子の形が見えた!
  5. ACSで無料公開できるかも?論文をオープンにしよう
  6. ヒュッケル法(後編)~Excelでフラーレンの電子構造を予測して…
  7. シャンパンの泡、脱気の泡
  8. 実験教育に最適!:鈴木ー宮浦クロスカップリング反応体験キット

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 氷河期に大量のメタン放出 十勝沖の海底研究で判明
  2. 【PR】Chem-Stationで記事を書いてみませんか?【スタッフ・寄稿募集】
  3. 光学活性ジペプチドホスフィン触媒を用いたイミンとアレン酸エステルの高エナンチオ選択的 [3+2] 環化反応
  4. グリニャール反応 Grignard Reaction
  5. 化学構造式描画のスタンダードを学ぼう!【応用編】
  6. 第30回「化学研究の成果とワクワク感を子供たちにも伝えたい」 玉尾皓平教授
  7. 菅沢反応 Sugasawa Reaction
  8. 名大・山本名誉教授に 「テトラへドロン賞」 有機化学分野で業績
  9. Dead Endを回避せよ!「全合成・極限からの一手」⑦
  10. 年収で内定受諾を決定する際のポイントとは

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

【マイクロ波化学(株)環境/化学分野向けウェビナー】 #CO2削減 #リサイクル #液体 #固体 #薄膜 #乾燥 第3のエネルギーがプロセスと製品を変える  マイクロ波適用例とスケールアップ

<内容>本イベントでは、環境/化学分野の事業・開発課題のソリューションとして、マイクロ波をご紹介…

医療用酸素と工業用酸素の違い

 スズキは29日、インドにある3工場の生産を一時停止すると明らかにした。インドでは新型コロナウイルス…

世界初のジアゾフリーキラル銀カルベン発生法の開発と活性化されていないベンゼノイドの脱芳香族化反応への応用

第310回のスポットライトリサーチは、千葉大学大学院医学薬学府 (根本研究室)・伊藤 翼さんにお願い…

キムワイプをつくった会社 ~キンバリー・クラーク社について~

Tshozoです。本件先日掲載されたこちらのArticleの追っかけでネタ色が強いですが書いてみるこ…

Advanced Real‐Time Process Analytics for Multistep Synthesis in Continuous Flow

In multistep continuous flow chemistry, studying c…

三角形ラジカルを使って発光性2次元ハニカムスピン格子構造を組み立てる!

第309回のスポットライトリサーチは、木村舜 博士にお願いしました。金属と有機配位子がネット…

第148回―「フッ素に関わる遷移金属錯体の研究」Graham Saunders准教授

第148回の海外化学者インタビューは、グラハム・サウンダース准教授です。ニュージーランドのハミルトン…

ケムステチャンネルをチャンネル登録しませんか?

5月11日で化学の情報サイトケムステは開設21周年を迎えます。これまで記事中心の活動を行ってきました…

Chem-Station Twitter

PAGE TOP