[スポンサーリンク]

一般的な話題

化学者のためのエレクトロニクス講座~めっきの基礎編~

[スポンサーリンク]

化学者のためのエレクトロニクス講座では半導体やその配線技術、フォトレジストやOLEDなど、エレクトロニクス産業で活躍する化学や材料のトピックスを詳しく掘り下げて紹介します。今回からは、半導体やプリント基板の配線に用いられるめっきについてご紹介します。手始めに、めっきの基礎知識をおさらいしておきましょう。

そもそもめっきとは?

そもそもめっきとは、物体の表面を金属で覆う表面処理技術全般を指します。この漠然とした定義のため、一口にめっきといっても様々な手法があります。化学的なめっき(化学めっき)には、一般に思い浮かべるであろう溶液中の電気化学反応によるもの(電気めっき電解めっき)の他に、還元剤などを用いる無電解めっきがあります。そのほかに、液体にした金属に物体を浸す溶融めっき、PVDCVDに代表される蒸着めっきなどの手法もあります。

電解めっき(画像:Wikipedia

身近なめっき

以前の記事で、身近な電子機器の製造に高度なめっき技術が用いられていることに触れましたが、他にも様々なところにめっきが施されています。

そもそも、製品にめっきを施す目的は大きく三つあります。

まず、以前記事にした電子機器の例のように、本来なかった機能を付与するためです。他の手法では目的に応じた金属の加工ができない場合に広く用いられています。

circuit

電子回路(画像:Pixabay

二つ目に、防錆など耐食性向上のためです。電子機器の金めっきの例が代表的ですが、歴史的には錆びやすい鉄板をスズSnで被覆したブリキや、鉄板に亜鉛Znをめっきすることで亜鉛が優先的に腐食する性質(犠牲防食)を利用したトタンが挙げられます。今日でもトタンは自転車置き場の屋根などに見かけますね。

自転車置き場の屋根にはトタンがしばしば用いられます(画像:Wikipedia

最後に、装飾用途です。めっきでは条件によって金属の外観を調整することが容易なため、日用品のほか、自動車部品に広く導入されています。極端な例では、自動車のエンブレム(メーカーやブランドを示すマーク)は、ABS樹脂などのプラスチック上にめっきしたものもあります。

自動車のエンブレムもメッキ加工品です(画像:Pixabay

このように、身の回りの金属製品の多くが、実はめっき処理を経て製造されています。アクセサリーや腕時計、フォークやスプーンなどの食器、建材や工業部品(耐摩耗性を要求される摺動部など)、自動車外装のほとんどが該当します。

めっきの歴史

めっきの歴史は案外古く、紀元前にさかのぼります。紀元前1500年頃の古代アッシリア帝国(現在のイラク)で、金属の腐食を防ぐために表面にスズSnを塗布していたとされます。現代のブリキと同じ原理ですね。

ちなみに、この時代にはまだ人類は電気を手にしておらず、低融点の金属を融かすか、水銀との合金(アマルガム)にして液体にしていたものと思われます。奈良は東大寺の大仏がアマルガム法で金めっきされたことをご存じの方も多いでしょう。

大仏も金めっきで作られました(画像:Flickr

化学めっきの発展

画期的な電気めっきが完成するのは、1800年のボルタ電池の登場を待つことになります

(諸説あり:紀元前250年頃のパルティア帝国で作られたとされる「バグダッド電池」が装飾めっきに用いられていたとする説もあります)。

電気めっきの発展に伴い、主に水素よりもイオン化傾向の小さな(貴な)金属がめっきできるようになり、その用途も格段に増えました。

一方、現在では電解反応を用いない無電解めっきも広く普及しています。これは、金属イオンを還元剤で還元することで金属として析出させるものです。無電解めっきは1835年にドイツの化学者、トレンスによって発見された「銀鏡反応」に端を発しています(彼の名にちなんで、アンモニア性硝酸銀溶液はトレンス試薬と呼ばれています)。高校化学でアルデヒドの検出法として習った反応が、歴史的にも重要な価値を持っているというのは興味深いですね。銀鏡反応はその名の通り、当初はを製造するために使われました。電気めっきとは異なり、無電解めっきでは電気を通さない絶縁体の表面にもめっきを施すことができるのが最大の利点です。なお、現在でも多くの鏡は無電解めっきによって製造されています。

鏡は身近な無電解めっき製品です(画像:pikrepo

ただ、銀鏡反応を試験管で行うと、内壁のガラスに銀が析出してしまうことからもお分かりいただけるように、これは接触した表面すべてに手当たり次第に析出してしまうものです。無電解めっきを施す部分と施さない部分のパターニングを行うためには、析出した金属上にのみ次の析出が起こる、自己触媒的な反応である必要があります。この特徴を備えたはじめての無電解めっきは、1946年にブレンナーらによって発見された無電解ニッケルめっき(Catalytic Nickel Generationの略でカニゼンとも呼ばれます)です。これは還元剤を添加しためっき液を電解したところ、100%を超える収率が得られたことに由来します。

絶縁体表面の狙った部位のみにめっきを施せるこの技術の発展により、1962年にはABS樹脂上に銅-クロム-ニッケル合金の被膜をコーティングできるようになりました。この技術が基礎となって、現代の自動車産業を支える部品が作られるようになっています。軽いプラスチックに薄い金属を被覆することで、大幅な軽量化や省資源化に貢献しました。

自動車はめっき技術なしには製造できません(画像:Wikipedia

その後の電子機器の発展により、半導体プリント基板の製造にめっき技術が用いられるようになると、要求される精密さの向上に伴ってめっきのもたらす付加価値も著しく増大しました。こうしたハイテク用途向けのめっきには高い技術力が必要とされ、その参入障壁の高さから各社の棲み分けは概ね固定されています。

plating

モバイル端末に欠かせないめっき(画像:Flickr

現代の高度なめっき技術は電気化学、表面化学、そして分析化学の様々な知見に基づいており、極めて学際的な応用分野といえます。そこで次回はまず、溶液に電圧をかけたときに起こる様々な変化からみていきたいと思います。

関連リンク

ウエムラ博士のめっき物語(上村工業株式会社)

加工技術データベース(国立研究開発法人 産業技術総合研究所)

関連書籍

[amazonjs asin=”B000J740MS” locale=”JP” title=”めっき技術ガイドブック (1983年)”] [amazonjs asin=”4526071927″ locale=”JP” title=”現代無電解めっき”] [amazonjs asin=”4526045225″ locale=”JP” title=”表面処理工学―基礎と応用”]
gaming voltammetry

berg

投稿者の記事一覧

化学メーカー勤務。学生時代は有機をかじってました⌬
電気化学、表面処理、エレクトロニクスなど、勉強しながら執筆していく予定です

関連記事

  1. 海外で働いている僕の体験談
  2. 【速報】2012年ノーベル化学賞発表!!「Gタンパク質共役受容体…
  3. 創薬開発で使用される偏った有機反応
  4. 多成分反応で交互ポリペプチドを合成
  5. カリフォルニア大学バークレー校・化学科への学部交換留学
  6. とある難病の薬 ~アザシチジンとその仲間~
  7. コスト管理に最適な選択:ディスポーザブルカラム Biotage®…
  8. クレブス回路代謝物と水素でエネルギー炭素資源を創出

注目情報

ピックアップ記事

  1. コーンブルム酸化 Kornblum Oxidation
  2. 吉野 彰 Akira Yoshino
  3. 高効率な可視-紫外フォトン・アップコンバージョン材料の開発 ~太陽光や室内LED光から紫外光の発生~
  4. イタリアに医薬品販売会社を設立 エーザイ
  5. 新アルゴリズムで量子化学的逆合成解析の限界突破!~未知反応をコンピュータで系統探索する新技術~
  6. 理系で研究職以外に進んだ人に話を聞いてみた
  7. DAST類縁体
  8. 蛍光と光増感能がコントロールできる有機ビスマス化合物
  9. ローゼンムント・フォンブラウン反応 Rosenmund-von Braun Reaction
  10. 超大画面ディスプレイ(シプラ)実現へ

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年12月
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

最新記事

7th Compound Challengeが開催されます!【エントリー〆切:2026年03月02日】 集え、”腕に覚えあり”の合成化学者!!

メルク株式会社より全世界の合成化学者と競い合うイベント、7th Compound Challenge…

乙卯研究所【急募】 有機合成化学分野(研究テーマは自由)の研究員募集

乙卯研究所とは乙卯研究所は、1915年の設立以来、広く薬学の研究を行うことを主要事業とし、その研…

大森 建 Ken OHMORI

大森 建(おおもり けん, 1969年 02月 12日–)は、日本の有機合成化学者。東京科学大学(I…

西川俊夫 Toshio NISHIKAWA

西川俊夫(にしかわ としお、1962年6月1日-)は、日本の有機化学者である。名古屋大学大学院生命農…

市川聡 Satoshi ICHIKAWA

市川 聡(Satoshi Ichikawa, 1971年9月28日-)は、日本の有機化学者・創薬化学…

非侵襲で使えるpH計で水溶液中のpHを測ってみた!

今回は、知っているようで知らない、なんとなく分かっているようで実は測定が難しい pH計(pHセンサー…

有馬温泉で鉄イオン水溶液について学んできた【化学者が行く温泉巡りの旅】

有馬温泉の金泉は、塩化物濃度と鉄濃度が日本の温泉の中で最も高い温泉で、黄褐色を呈する温泉です。この記…

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP