[スポンサーリンク]

化学者のつぶやき

過酸がC–H結合を切ってメチル基を提供する

[スポンサーリンク]

光増感剤とニッケル触媒を用いたC(sp3)–Hメチル化が開発された。合成終盤でのメチル化に威力を発揮する。

“マジックメチル”効果とC(sp3)–Hメチル化

生物活性分子へのメチル基の導入により、立体配座や溶解性が変化し、薬理活性が向上する現象は“マジックメチル”効果として知られる。例えば、メチル基の導入で肝毒性が低減したイブプロフェンはその好例である(図 1A)[1]。数あるメチル基の導入法の中でも、直截的なC(sp3)–Hメチル化は既存の医薬品を迅速にメチル化できる有用な手法である[2]。水素原子移動(HAT)およびクロスカップリングにより直截的C(sp3)–Hアルキル化を達成した先駆的な例として、MacMillanはイリジウム触媒/ニッケル触媒/HAT触媒の協働触媒系を報告した(図 1B)[3]。HATにより生じたアルキルラジカルは求電子剤とのクロスカップリングを経てアルキル化体を生成する。しかし、アルキル基の導入はヘテロ原子α位に限られる。
一方で、パーオキシドより生成するメチルラジカルは、種々の求電子剤とのクロスカップリングに用いられてきた(図 1C)[4]。メチルラジカルは、パーオキシドの均等開裂で得られるアルコキシラジカルのb-開裂によって生成する。
今回、ウィスコンシン大学マディソン校のStahlらはイリジウム触媒/ニッケル触媒とパーオキシドを用いたC(sp3)–Hメチル化を報告した(図 1D)。HATにより生じた炭素ラジカルと、パーオキシド由来のメチルラジカルがカップリングすることで、ベンジル位や窒素原子a位がメチル化された生成物を与える。

図1. (A) “マジックメチル” 効果 (B) Ir/Ni触媒を用いたC(sp3)–Hアルキル化 (C)過酸をメチル源とするカップリング反応(D) 今回の反応

 

“C(sp3)–H Methylation Enabled by Peroxide Photosensitization and Ni-Mediated Radical Coupling”
Vasilopoulos, A.; Krska, S. W.; Stahl, S. S. Science 2021, 372, 398–403.
DOI: 10.1126/science.abh2623

論文著者の紹介


研究者:Shannon S. Stahl
研究者の経歴:
–1992 B.S., University of Illinois at Urbana-Champaign, USA (Prof. Patricia A. Shapley)
–1997 Ph.D., California Institute of Technology, USA (Prof. John E. Bercaw)
1997–1999 Postdoc, Massachusetts Institute of Technology, USA (Prof. Stephen J. Lippard)
1999–2005 Assistant Professor of Chemistry, University of Wisconsin-Madison, USA
2005–2007 Associate Professor of Chemistry, University of Wisconsin-Madison, USA
2007– Professor of Chemistry, University of Wisconsin-Madison, USA
研究内容:遷移金属触媒を用いた空気酸化、ラジカル的C–H酸化とクロスカップリング、電気化学的手法を用いた有機合成

論文の概要

著者らはNiCl2·dme tButpy/Ir[dF(CF3)ppy]2(dtbbpy)PF6触媒存在下、アルキルアレーン1と過酸2に対し青色光を照射することで、メチル化体3が得られることを見いだした(図 2A)。

本反応は種々の基質のベンジル位や窒素原子a位のメチル化が可能である。N-(3-フェニルプロピル)フタルイミド(1a)を用いると対応するメチル化体3aを中程度の収率で与えた。ベンジル位と窒素原子a位が共存する1bでは窒素原子a位が優先してメチル化されるが、アンモニウム塩1cを基質とするとベンジル位のメチル化のみ進行する(3b and 3c)。
反応条件の検討過程で、著者らは光増感剤の三重項励起エネルギーが55 kcal/molを超えたときに1aの転化率が急増し、一定値を示すことを発見した(図 2B, 一部論文より引用)。

このことからパーオキシドの均等開裂は三重項エネルギー移動によるものだと示唆された。また、ニッケル触媒の役割を明らかするため種々の対照実験を実施した(図2C)。基質1a2の反応においてニッケル触媒を添加しない場合、3aの収率は大きく低下した。続いて、副生するメタンとエタン、3aの生成比を比較した。1aとニッケル触媒を添加しない場合、メタンが主生成物として得られた。

一方で1aのみ添加しない場合はエタンが主生成物となった。1a、ニッケル触媒存在下ではエタンが副生するものの、3aの生成が確認され、ニッケル触媒を介したカップリングの進行が示唆された。以上の結果より、ニッケル触媒がHATを抑制しラジカルカップリングを大幅に促進することが明らかとなった。

図2. (A) 基質適用範囲 (B) 光増感剤の評価 (C) ニッケル触媒の役割

以上、イリジウム触媒/ニッケル触媒を用いたC(sp3)–Hメチル化が開発された。合成終盤でのメチル基の導入により”マジックメチル”効果を発現させる一つの手法となりうる。

 参考文献

  1. Sun, S.; Fu, J. Methyl-Containing Pharmaceuticals: Methylation in Drug Design. Bioorg. Med. Chem. Lett. 2018, 28, 3283–3289. DOI: 10.1016/j.bmcl.2018.09.016
  2. Feng, K.; Quevedo, R. E.; Kohrt, J. T.; Oderinde, M. S.; Reilly, U.; White, M. S. Late-Stage Oxidative C(sp3)–H Methylation. Nature 2020, 580, 621–627. DOI: 1038/s41586-020-2137-8
  3. Le, C.; Liang, Y.; Evans, R. W.; Li, X.; MacMillan, D. W. C. Selective sp3 C–H Alkylation via Polarity-Match-Based Cross-Coupling. Nature 2017, 547, 79–83. DOI: 1038/nature22813
  4. (a) Aynetdinova, D.; Callens, M. C.; Hicks, H. B.; Poh, C. X. Y.; Shennan, B. D. A.; Boyd, A. M.; Lim, Z. H.; Leitch, J. A.; Dixon, D. J. Installing the “Magic Methyl” – C–H Methylation in Synthesis. Chem. Soc. Rev. 2021, 50, 5517–5563. DOI: 10.1039/D0CS00973C (b) Yan, G.; Borah, A. J.; Wang, L.; Yang, M. Recent Advances in Transition Metal-Catalyzed Methylation Reactions. Adv. Synth. Catal. 2015, 357, 1333–1350. DOI: 10.1002/adsc.201400984 (c) Chen, Y. Recent Advances in Methylation: A Guide for Selecting Methylation Reagents. Chem. Eur. J. 2019, 25, 3405–3439. DOI: 10.1002/chem.201803642
山口 研究室

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. (–)-Spirochensilide Aの不斉全合成
  2. 反芳香族性を有する拡張型フタロシアニン
  3. Al=Al二重結合化合物
  4. 「無保護アルコールの直截的なカップリング反応」-Caltech …
  5. アメリカ化学留学 ”立志編 ーアメリカに行く前に用意…
  6. 化学者の卵に就職活動到来
  7. 近赤外光を青色の光に変換するアップコンバージョン-ナノ粒子の開発…
  8. メカノケミストリーを用いた固体クロスカップリング反応

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 化学産業における規格の意義
  2. 飯野 裕明 Hiroaki Iino
  3. 「話すのが得意」でも面接が通らない人の特徴
  4. 論文チェックと文献管理にお困りの方へ:私が実際に行っている方法を教えます!
  5. 「シカゴとオースティンの6年間」 山本研/Krische研より
  6. 速報! ノーベル物理学賞2014日本人トリプル受賞!!
  7. 科学ボランティアは縁の下の力持ち
  8. 第16回次世代を担う有機化学シンポジウム
  9. デニス・ドーハティ Dennis A. Dougherty
  10. 5歳児の唾液でイグ・ノーベル化学賞=日本人、13年連続

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年7月
« 6月   8月 »
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

注目情報

最新記事

アブラナ科植物の自家不和合性をタンパク質複合体の観点から解明:天然でも希少なSP11タンパク質の立体構造予測を踏まえて

第340回のスポットライトリサーチは、東京大学 大学院農学生命科学研究科の森脇 由隆…

オンライン講演会に参加してみた~学部生の挑戦記録~

hodaです。講演会やシンポジウムのオンライン化によって学部生でもいろいろな講演会にボタンひとつで参…

令和3年度に登録された未来技術遺産が発表 ~フィッシャー・トロプシュ法や記憶媒体に関する資料が登録~

国立科学博物館は、平成20年度から重要科学技術史資料(愛称:未来技術遺産)の登録を実施しています。令…

企業研究者のためのMI入門②:Pythonを学ぶ上でのポイントとおすすめの参考書ご紹介

現在、多くの企業がデジタルトランスフォーメーション(DX)による生産性向上を試みています。特に化学メ…

女子の強い味方、美味しいチョコレート作りを助ける化合物が見出される

チョコレートの製造過程でリン脂質分子を添加するという方法を用いれば、複雑なテンパリング(加熱・せん断…

火力発電所排気ガスや空気から尿素誘導体の直接合成に成功

第339回のスポットライトリサーチは、産業技術総合研究所 触媒化学融合研究センタ…

CV測定器を使ってみた

「電気化学」と聞くと、難しい数式が出てきて何やらとっつきづらいというイメージがある人が多いと思います…

知られざる法科学技術の世界

皆さんは、日本法科学技術学会という学会をご存じでしょうか。法科学は、犯罪における問題を”科学と技術”…

有機合成化学協会誌2021年9月号:ストリゴラクトン・アミド修飾アリル化剤・液相電解自動合成・ビフェニレン・含窒素複素環

有機合成化学協会が発行する有機合成化学協会誌、2021年9月号がオンライン公開されました。9…

イグノーベル賞2021が発表:今年は化学賞あり!

2021年9月9日、「人々を笑わせ考えさせた業績」に送られるイグノーベル賞の第31回授賞式が行われま…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP