[スポンサーリンク]

化学者のつぶやき

過酸がC–H結合を切ってメチル基を提供する

[スポンサーリンク]

光増感剤とニッケル触媒を用いたC(sp3)–Hメチル化が開発された。合成終盤でのメチル化に威力を発揮する。

“マジックメチル”効果とC(sp3)–Hメチル化

生物活性分子へのメチル基の導入により、立体配座や溶解性が変化し、薬理活性が向上する現象は“マジックメチル”効果として知られる。例えば、メチル基の導入で肝毒性が低減したイブプロフェンはその好例である(図 1A)[1]。数あるメチル基の導入法の中でも、直截的なC(sp3)–Hメチル化は既存の医薬品を迅速にメチル化できる有用な手法である[2]。水素原子移動(HAT)およびクロスカップリングにより直截的C(sp3)–Hアルキル化を達成した先駆的な例として、MacMillanはイリジウム触媒/ニッケル触媒/HAT触媒の協働触媒系を報告した(図 1B)[3]。HATにより生じたアルキルラジカルは求電子剤とのクロスカップリングを経てアルキル化体を生成する。しかし、アルキル基の導入はヘテロ原子α位に限られる。
一方で、パーオキシドより生成するメチルラジカルは、種々の求電子剤とのクロスカップリングに用いられてきた(図 1C)[4]。メチルラジカルは、パーオキシドの均等開裂で得られるアルコキシラジカルのb-開裂によって生成する。
今回、ウィスコンシン大学マディソン校のStahlらはイリジウム触媒/ニッケル触媒とパーオキシドを用いたC(sp3)–Hメチル化を報告した(図 1D)。HATにより生じた炭素ラジカルと、パーオキシド由来のメチルラジカルがカップリングすることで、ベンジル位や窒素原子a位がメチル化された生成物を与える。

図1. (A) “マジックメチル” 効果 (B) Ir/Ni触媒を用いたC(sp3)–Hアルキル化 (C)過酸をメチル源とするカップリング反応(D) 今回の反応

 

“C(sp3)–H Methylation Enabled by Peroxide Photosensitization and Ni-Mediated Radical Coupling”
Vasilopoulos, A.; Krska, S. W.; Stahl, S. S. Science 2021, 372, 398–403.
DOI: 10.1126/science.abh2623

論文著者の紹介


研究者:Shannon S. Stahl
研究者の経歴:
–1992 B.S., University of Illinois at Urbana-Champaign, USA (Prof. Patricia A. Shapley)
–1997 Ph.D., California Institute of Technology, USA (Prof. John E. Bercaw)
1997–1999 Postdoc, Massachusetts Institute of Technology, USA (Prof. Stephen J. Lippard)
1999–2005 Assistant Professor of Chemistry, University of Wisconsin-Madison, USA
2005–2007 Associate Professor of Chemistry, University of Wisconsin-Madison, USA
2007– Professor of Chemistry, University of Wisconsin-Madison, USA
研究内容:遷移金属触媒を用いた空気酸化、ラジカル的C–H酸化とクロスカップリング、電気化学的手法を用いた有機合成

論文の概要

著者らはNiCl2·dme tButpy/Ir[dF(CF3)ppy]2(dtbbpy)PF6触媒存在下、アルキルアレーン1と過酸2に対し青色光を照射することで、メチル化体3が得られることを見いだした(図 2A)。

本反応は種々の基質のベンジル位や窒素原子a位のメチル化が可能である。N-(3-フェニルプロピル)フタルイミド(1a)を用いると対応するメチル化体3aを中程度の収率で与えた。ベンジル位と窒素原子a位が共存する1bでは窒素原子a位が優先してメチル化されるが、アンモニウム塩1cを基質とするとベンジル位のメチル化のみ進行する(3b and 3c)。
反応条件の検討過程で、著者らは光増感剤の三重項励起エネルギーが55 kcal/molを超えたときに1aの転化率が急増し、一定値を示すことを発見した(図 2B, 一部論文より引用)。

このことからパーオキシドの均等開裂は三重項エネルギー移動によるものだと示唆された。また、ニッケル触媒の役割を明らかするため種々の対照実験を実施した(図2C)。基質1a2の反応においてニッケル触媒を添加しない場合、3aの収率は大きく低下した。続いて、副生するメタンとエタン、3aの生成比を比較した。1aとニッケル触媒を添加しない場合、メタンが主生成物として得られた。

一方で1aのみ添加しない場合はエタンが主生成物となった。1a、ニッケル触媒存在下ではエタンが副生するものの、3aの生成が確認され、ニッケル触媒を介したカップリングの進行が示唆された。以上の結果より、ニッケル触媒がHATを抑制しラジカルカップリングを大幅に促進することが明らかとなった。

図2. (A) 基質適用範囲 (B) 光増感剤の評価 (C) ニッケル触媒の役割

以上、イリジウム触媒/ニッケル触媒を用いたC(sp3)–Hメチル化が開発された。合成終盤でのメチル基の導入により”マジックメチル”効果を発現させる一つの手法となりうる。

 参考文献

  1. Sun, S.; Fu, J. Methyl-Containing Pharmaceuticals: Methylation in Drug Design. Bioorg. Med. Chem. Lett. 2018, 28, 3283–3289. DOI: 10.1016/j.bmcl.2018.09.016
  2. Feng, K.; Quevedo, R. E.; Kohrt, J. T.; Oderinde, M. S.; Reilly, U.; White, M. S. Late-Stage Oxidative C(sp3)–H Methylation. Nature 2020, 580, 621–627. DOI: 1038/s41586-020-2137-8
  3. Le, C.; Liang, Y.; Evans, R. W.; Li, X.; MacMillan, D. W. C. Selective sp3 C–H Alkylation via Polarity-Match-Based Cross-Coupling. Nature 2017, 547, 79–83. DOI: 1038/nature22813
  4. (a) Aynetdinova, D.; Callens, M. C.; Hicks, H. B.; Poh, C. X. Y.; Shennan, B. D. A.; Boyd, A. M.; Lim, Z. H.; Leitch, J. A.; Dixon, D. J. Installing the “Magic Methyl” – C–H Methylation in Synthesis. Chem. Soc. Rev. 2021, 50, 5517–5563. DOI: 10.1039/D0CS00973C (b) Yan, G.; Borah, A. J.; Wang, L.; Yang, M. Recent Advances in Transition Metal-Catalyzed Methylation Reactions. Adv. Synth. Catal. 2015, 357, 1333–1350. DOI: 10.1002/adsc.201400984 (c) Chen, Y. Recent Advances in Methylation: A Guide for Selecting Methylation Reagents. Chem. Eur. J. 2019, 25, 3405–3439. DOI: 10.1002/chem.201803642

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. マテリアルズ・インフォマティクスのためのSaaS miHub活用…
  2. 【動画】元素のうた―日本語バージョン
  3. 有機合成化学協会誌2021年4月号:共有結合・ゲル化剤・Hove…
  4. 海外機関に訪問し、英語講演にチャレンジ!~③ いざ、機関訪問!~…
  5. オルガネラ選択的な薬物送達法:②小胞体・ゴルジ体・エンドソーム・…
  6. 文献管理ソフトを徹底比較!
  7. 導電性ゲル Conducting Gels: 流れない流体に電気…
  8. 立体選択的な(+)-Microcladallene Bの全合成

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ハットする間にエピメリ化!Pleurotinの形式合成
  2. 乾燥剤の種類と合成化学での利用法
  3. π拡張ジベンゾ[a,f]ペンタレン類の合成と物性
  4. NMRのプローブと測定(Bruker編)
  5. 化学系研究室ホームページ作成ガイド
  6. ルテニウム触媒によるC-C結合活性化を介した水素移動付加環化型カップリング
  7. 第18回 出版業務が天職 – Catherine Goodman
  8. 徹底的に電子不足化した有機π共役分子 ~高機能n型有機半導体材料の創製を目指して~
  9. 実例で分かるスケールアップの原理と晶析【終了】
  10. 【書籍】有機スペクトル解析入門

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年7月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

最新記事

電子のスピンに基づく新しい「異性体」を提唱―スピン状態を色で見分けられる分子を創製―

第614回のスポットライトリサーチは、京都大学大学院工学研究科(松田研究室)の清水大貴 助教にお願い…

Wei-Yu Lin教授の講演を聴講してみた

bergです。この度は2024年5月13日(月)に東京大学 本郷キャンパス(薬学部)にて開催されたW…

【26卒】太陽HD研究開発 1day仕事体験

太陽HDでの研究開発職を体感してみませんか?私たちの研究活動についてより近くで体験していただく場…

カルベン転移反応 ~フラスコ内での反応を生体内へ~

有機化学を履修したことのある方は、ほとんど全員と言っても過言でもないほどカルベンについて教科書で習っ…

ナノ学会 第22回大会 付設展示会ケムステキャンペーン

ナノ学会の第22回大会が東北大学青葉山新キャンパスにて開催されます。協賛団体であるACS(ア…

【酵素模倣】酸素ガスを用いた MOF 内での高スピン鉄(IV)オキソの発生

Long らは酸素分子を酸化剤に用いて酵素を模倣した反応活性種を金属-有機構造体中に発生させ、C-H…

【書評】奇跡の薬 16 の物語 ペニシリンからリアップ、バイアグラ、新型コロナワクチンまで

ペニシリンはたまたま混入したアオカビから発見された──だけではない.薬の…

MEDCHEM NEWS 33-2 号「2022年度医薬化学部会賞」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

マテリアルズ・インフォマティクスにおける分子生成の基礎と応用

開催日:2024/05/22 申込みはこちら■開催概要「分子生成」という技術は様々な問題…

AlphaFold3の登場!!再びブレイクスルーとなりうるのか~実際にβ版を使用してみた~

2021年にタンパク質の立体構造予測ツールであるAlphaFold2 (AF2) が登場し、様々な分…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP