[スポンサーリンク]

化学者のつぶやき

創薬化学における「フッ素のダークサイド」

[スポンサーリンク]

フッ素は全元素中最大の電気陰性度を有するなど、化学的物性値に外れ値を示す事が多く、元素として特殊な扱いが成されます。

これを医薬構造中に入れこむことで、薬効を調節したり、疎水性を高めたり、代謝安定性を改善したり、動態追跡のPET応用に用いたり・・・などの良い効果があるとされています[1]。この有用性から「分子にフッ素を効率良く導入する反応」が歴史的にも沢山開発されてきています[2]。

しかしその一方で、フッ化医薬構造の分解により予期せぬ悪影響が生じてしまうことも指摘されています。この事例をNovartis社の研究員がまとめておりましたので、今回はこれを取り上げてみます。

”The Dark Side of Fluorine”
Pan, Y.  ACS Med. Chem. Lett. 2019, DOI: 10.1021/acsmedchemlett.9b00235

フッ化構造分解による悪影響

C-F結合は切れづらく(BDE=109 kcal/mol)、酸化的代謝も受けづらいため、とくに医薬構造に含まれる弱い結合を代替する目的で導入されます。

しかしながら耐性をもつのは均等開裂条件に対してであり、フッ素アニオンとして脱離していく不均等開裂条件に対しては案外脆いところがあります。壊れた骨格が毒性代謝物として働いたり、フッ素アニオンが骨集積することで、様々な副作用のもとになります。

SN2反応を介して分解する例

下記は生理的条件下で加水分解を起こしたり、生体内グルタチオンとの置換反応を起こしたりする構造例です。特に分子内に求核部位を持つ構造、ベンジル位やアリル位のように活性化されたC-F結合をもつ化合物の場合は注意が必要です。こういった傾向は立体障害基の導入に加え、ジフルオロメチル基・トリフルオロメチル基にすげ替えることで減ずることができるようです。

ヘテロ原子の非共有電子対関与で分解する例

非共有電子対の関与によってカルボカチオンが安定化される構造においては、CーF結合の分解が見られます。ビニロガス位のような遠隔でも効いてくるので要注意。窒素上への電子求引基の導入によってある程度抑制が可能です。

酸化的代謝がトリガーとなって分解する例

酸化的代謝がトリガーとなってフッ化水素を放出する経路も考えられます。 代謝物がしばしばマイケルアクセプター様構造となることも相まって、CYP阻害やグルタチオン付加体などの形成につながります。代謝標的になる水素をメチル化するなどの対応が取られます。

2-フルオロエチル基や1,3-ジフルオロ-2-プロピル基などは特別の注意が必要で、酸化的代謝によって猛毒のモノフルオロ酢酸が生成しえます(クエン酸回路の阻害物質として働く。半数致死量はシアン化ナトリウムと同程度)。

まとめ

化学的には「言われてみればそうですね~」な事例ばかりなのですが、普段から可能性を頭に置いておかないと、ふとした拍子に気づきにくい話とも思えました。

良い面ばかりのみならず懸念面もあるのだ、ということを頭に置いておくことで、より適切な使用が行えるようになるのはどんな技術でも同じです。こういう情報は時間を見つけて適宜仕入れておきたいところですね。

関連文献

  1. Gillis, E. P.; Eastman, K. J.; Hill, M. D.; Donnelly, D. J.; Meanwell, N. A. J. Med. Chem. 2015, 58, 8315. doi:10.1021/acs.jmedchem.5b00258
  2. (a) Gouverneur, V.; Szpera, R.; Moseley, D. F. J.; Smith, L. B.; Sterling, A. J. Angew. Chem. Int. Ed. 2019, doi: 10.1002/anie.201814457 (b) Yang, L.; Dong, T.; Revankar, H. M.; Zhang, C.-P. Green Chem. 2017, 19, 3951. doi:10.1039/C7GC01566F

関連書籍

[amazonjs asin=”4274506916″ locale=”JP” title=”創薬科学入門 ―薬はどのようにつくられる? (改訂2版)”][amazonjs asin=”1405167203″ locale=”JP” title=”Fluorine in Medicinal Chemistry and Chemical Biology”]

ケムステ関連記事

外部リンク

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 異分野交流のすゝめ
  2. 「未来博士3分間コンペティション2020」の挑戦者を募集
  3. 第63回野依フォーラム例会「データ駆動型化学が拓く新たな世界」特…
  4. 多成分反応で交互ポリペプチドを合成
  5. スペクトルから化合物を検索「KnowItAll」
  6. 2019年ノーベル化学賞は「リチウムイオン電池」に!
  7. 動的共有結合性ラジカルを配位子とした金属錯体の合成
  8. 2022年ノーベル化学賞ケムステ予想当選者発表!

注目情報

ピックアップ記事

  1. Chem-Station 6周年へ
  2. ハラスメントから自分を守るために。他人を守るために【アメリカで Ph.D. を取る –オリエンテーションの巻 その 2-】
  3. 米ファイザーの第3・四半期決算は52%減益
  4. 米ファイザー、今期業績予想を上方修正・1株利益1.68ドルに
  5. ゼロから学ぶ機械学習【化学徒の機械学習】
  6. ケムステ版・ノーベル化学賞候補者リスト【2019年版】
  7. まんがサイエンス
  8. 高機能な導電性ポリマーの精密合成法の開発
  9. 化学ゆるキャラ大集合
  10. 原田 明 Akira Harada

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年7月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

最新記事

融合する知とともに化学の視野を広げよう!「リンダウ・ノーベル賞受賞者会議」参加者募集中!

ドイツの保養地リンダウで毎年夏に1週間程度の日程で開催される、リンダウ・ノーベル賞受賞者会議(Lin…

ダイヤモンド半導体について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、究極の…

有機合成化学協会誌2025年6月号:カルボラン触媒・水中有機反応・芳香族カルボン酸の位置選択的変換・C(sp2)-H官能基化・カルビン錯体

有機合成化学協会が発行する有機合成化学協会誌、2025年6月号がオンラインで公開されています。…

【日産化学 27卒】 【7/10(木)開催】START your ChemiSTORY あなたの化学をさがす 研究職限定 Chem-Talks オンライン大座談会

現役研究者18名・内定者(26卒)9名が参加!日産化学について・就職活動の進め方・研究職のキャリアに…

データ駆動型生成AIの限界に迫る!生成AIで信頼性の高い分子設計へ

第663回のスポットライトリサーチは、横浜市立大学大学院 生命医科学研究科(生命情報科学研究室)博士…

MDSのはなし 骨髄異形成症候群とそのお薬の開発状況 その2

Tshozoです。前回はMDSについての簡易な情報と歴史と原因を述べるだけで終わってしまったので…

水-有機溶媒の二液相間電子伝達により進行する人工光合成反応

第662回のスポットライトリサーチは、京都大学 大学院工学研究科 物質エネルギー化学専攻 阿部竜研究…

ケムステイブニングミキサー 2025 報告

3月26日から29日の日本化学会第105春季年会に参加されたみなさま、おつかれさまでした!運営に…

【テーマ別ショートウェビナー】今こそ変革の時!マイクロ波が拓く脱炭素時代のプロセス革新

■ウェビナー概要プロセスの脱炭素化及び効率化のキーテクノロジーである”マイクロ波…

予期せぬパラジウム移動を経る環化反応でベンゾヘテロールを作る

1,2-Pd移動を含む予期せぬ連続反応として進行することがわかり、高収率で生成物が得られた。 合…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP