[スポンサーリンク]

化学者のつぶやき

創薬化学における「フッ素のダークサイド」

[スポンサーリンク]

フッ素は全元素中最大の電気陰性度を有するなど、化学的物性値に外れ値を示す事が多く、元素として特殊な扱いが成されます。

これを医薬構造中に入れこむことで、薬効を調節したり、疎水性を高めたり、代謝安定性を改善したり、動態追跡のPET応用に用いたり・・・などの良い効果があるとされています[1]。この有用性から「分子にフッ素を効率良く導入する反応」が歴史的にも沢山開発されてきています[2]。

しかしその一方で、フッ化医薬構造の分解により予期せぬ悪影響が生じてしまうことも指摘されています。この事例をNovartis社の研究員がまとめておりましたので、今回はこれを取り上げてみます。

”The Dark Side of Fluorine”
Pan, Y.  ACS Med. Chem. Lett. 2019, DOI: 10.1021/acsmedchemlett.9b00235

フッ化構造分解による悪影響

C-F結合は切れづらく(BDE=109 kcal/mol)、酸化的代謝も受けづらいため、とくに医薬構造に含まれる弱い結合を代替する目的で導入されます。

しかしながら耐性をもつのは均等開裂条件に対してであり、フッ素アニオンとして脱離していく不均等開裂条件に対しては案外脆いところがあります。壊れた骨格が毒性代謝物として働いたり、フッ素アニオンが骨集積することで、様々な副作用のもとになります。

SN2反応を介して分解する例

下記は生理的条件下で加水分解を起こしたり、生体内グルタチオンとの置換反応を起こしたりする構造例です。特に分子内に求核部位を持つ構造、ベンジル位やアリル位のように活性化されたC-F結合をもつ化合物の場合は注意が必要です。こういった傾向は立体障害基の導入に加え、ジフルオロメチル基・トリフルオロメチル基にすげ替えることで減ずることができるようです。

ヘテロ原子の非共有電子対関与で分解する例

非共有電子対の関与によってカルボカチオンが安定化される構造においては、CーF結合の分解が見られます。ビニロガス位のような遠隔でも効いてくるので要注意。窒素上への電子求引基の導入によってある程度抑制が可能です。

酸化的代謝がトリガーとなって分解する例

酸化的代謝がトリガーとなってフッ化水素を放出する経路も考えられます。 代謝物がしばしばマイケルアクセプター様構造となることも相まって、CYP阻害やグルタチオン付加体などの形成につながります。代謝標的になる水素をメチル化するなどの対応が取られます。

2-フルオロエチル基や1,3-ジフルオロ-2-プロピル基などは特別の注意が必要で、酸化的代謝によって猛毒のモノフルオロ酢酸が生成しえます(クエン酸回路の阻害物質として働く。半数致死量はシアン化ナトリウムと同程度)。

まとめ

化学的には「言われてみればそうですね~」な事例ばかりなのですが、普段から可能性を頭に置いておかないと、ふとした拍子に気づきにくい話とも思えました。

良い面ばかりのみならず懸念面もあるのだ、ということを頭に置いておくことで、より適切な使用が行えるようになるのはどんな技術でも同じです。こういう情報は時間を見つけて適宜仕入れておきたいところですね。

関連文献

  1. Gillis, E. P.; Eastman, K. J.; Hill, M. D.; Donnelly, D. J.; Meanwell, N. A. J. Med. Chem. 2015, 58, 8315. doi:10.1021/acs.jmedchem.5b00258
  2. (a) Gouverneur, V.; Szpera, R.; Moseley, D. F. J.; Smith, L. B.; Sterling, A. J. Angew. Chem. Int. Ed. 2019, doi: 10.1002/anie.201814457 (b) Yang, L.; Dong, T.; Revankar, H. M.; Zhang, C.-P. Green Chem. 2017, 19, 3951. doi:10.1039/C7GC01566F

関連書籍

[amazonjs asin=”4274506916″ locale=”JP” title=”創薬科学入門 ―薬はどのようにつくられる? (改訂2版)”][amazonjs asin=”1405167203″ locale=”JP” title=”Fluorine in Medicinal Chemistry and Chemical Biology”]

ケムステ関連記事

外部リンク

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 理化学機器のリユースマーケット「ZAI」
  2. 危ない試薬・面倒な試薬の便利な代替品
  3. なぜ傷ついたマジックマッシュルームは青くなるの?
  4. 複雑分子を生み出す脱水素型ディールス・アルダー反応
  5. 有機合成化学協会誌2020年10月号:ハロゲンダンス・Cpルテニ…
  6. ケムステ海外研究記 まとめ【地域別/目的別】
  7. 金属キラル中心をもつ可視光レドックス不斉触媒
  8. ケムステV年末ライブ2023開催報告! 〜今年の分子 and 人…

注目情報

ピックアップ記事

  1. ドミノ遊びのように炭素結合をつくる!?
  2. コールマン試薬 Collman’s Reagent
  3. どろどろ血液でもへっちゃら
  4. カスケード反応で難関天然物をまとめて攻略!
  5. 白い器を覆っている透明なガラスってなんだ?
  6. カーボンナノチューブ薄膜のSEM画像を生成し、物性を予測するAIが開発される
  7. MOF 結晶表面の敏感な応答をリアルタイム観察
  8. 食品添加物はなぜ嫌われるのか: 食品情報を「正しく」読み解くリテラシー
  9. 日本化学会ケムステイブニングミキサーへのお誘い
  10. 高橋 大介 Daisuke Takahashi

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年7月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

最新記事

二酸化マンガンの極小ナノサイズ化で次世代電池や触媒の性能を底上げ!

第649回のスポットライトリサーチは、東北大学大学院環境科学研究科(本間研究室)博士課程後期2年の飯…

日本薬学会第145年会 に参加しよう!

3月27日~29日、福岡国際会議場にて 「日本薬学会第145年会」 が開催されま…

TLC分析がもっと楽に、正確に! ~TLC分析がアナログからデジタルに

薄層クロマトグラフィーは分離手法の一つとして、お金をかけず、安価な方法として現在…

先端の質量分析:GC-MSおよびLC-MSデータ処理における機械学習の応用

キャラクタライゼーションの機械学習応用は、マテリアルズ・インフォマティクス(MI)およびラボオートメ…

原子半径・電気陰性度・中間体の安定性に起因する課題を打破〜担持Niナノ粒子触媒の協奏的触媒作用〜

第648回のスポットライトリサーチは、東京大学大学院工学系研究科(山口研究室)博士課程後期2年の松山…

リビングラジカル重合ガイドブック -材料設計のための反応制御-

概要高機能高分子材料の合成法として必須となったリビングラジカル重合を、ラジカル重合の基礎から、各…

高硬度なのに高速に生分解する超分子バイオプラスチックのはなし

Tshozoです。これまでプラスチックの選別の話やマイクロプラスチックの話、およびナノプラスチッ…

新発想の分子モーター ―分子機械の新たなパラダイム―

第646回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機反応論研究室 助教の …

大人気の超純水製造装置を組み立ててみた

化学・生物系の研究室に欠かせない超純水装置。その中でも最も知名度が高いのは、やはりメルクの Mill…

Carl Boschの人生 その11

Tshozoです。間が空きましたが前回の続きです。時系列が前後しますが窒素固定の開発を始めたころ、B…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP