[スポンサーリンク]

化学者のつぶやき

創薬化学における「フッ素のダークサイド」

[スポンサーリンク]

フッ素は全元素中最大の電気陰性度を有するなど、化学的物性値に外れ値を示す事が多く、元素として特殊な扱いが成されます。

これを医薬構造中に入れこむことで、薬効を調節したり、疎水性を高めたり、代謝安定性を改善したり、動態追跡のPET応用に用いたり・・・などの良い効果があるとされています[1]。この有用性から「分子にフッ素を効率良く導入する反応」が歴史的にも沢山開発されてきています[2]。

しかしその一方で、フッ化医薬構造の分解により予期せぬ悪影響が生じてしまうことも指摘されています。この事例をNovartis社の研究員がまとめておりましたので、今回はこれを取り上げてみます。

”The Dark Side of Fluorine”
Pan, Y.  ACS Med. Chem. Lett. 2019, DOI: 10.1021/acsmedchemlett.9b00235

フッ化構造分解による悪影響

C-F結合は切れづらく(BDE=109 kcal/mol)、酸化的代謝も受けづらいため、とくに医薬構造に含まれる弱い結合を代替する目的で導入されます。

しかしながら耐性をもつのは均等開裂条件に対してであり、フッ素アニオンとして脱離していく不均等開裂条件に対しては案外脆いところがあります。壊れた骨格が毒性代謝物として働いたり、フッ素アニオンが骨集積することで、様々な副作用のもとになります。

SN2反応を介して分解する例

下記は生理的条件下で加水分解を起こしたり、生体内グルタチオンとの置換反応を起こしたりする構造例です。特に分子内に求核部位を持つ構造、ベンジル位やアリル位のように活性化されたC-F結合をもつ化合物の場合は注意が必要です。こういった傾向は立体障害基の導入に加え、ジフルオロメチル基・トリフルオロメチル基にすげ替えることで減ずることができるようです。

ヘテロ原子の非共有電子対関与で分解する例

非共有電子対の関与によってカルボカチオンが安定化される構造においては、CーF結合の分解が見られます。ビニロガス位のような遠隔でも効いてくるので要注意。窒素上への電子求引基の導入によってある程度抑制が可能です。

酸化的代謝がトリガーとなって分解する例

酸化的代謝がトリガーとなってフッ化水素を放出する経路も考えられます。 代謝物がしばしばマイケルアクセプター様構造となることも相まって、CYP阻害やグルタチオン付加体などの形成につながります。代謝標的になる水素をメチル化するなどの対応が取られます。

2-フルオロエチル基や1,3-ジフルオロ-2-プロピル基などは特別の注意が必要で、酸化的代謝によって猛毒のモノフルオロ酢酸が生成しえます(クエン酸回路の阻害物質として働く。半数致死量はシアン化ナトリウムと同程度)。

まとめ

化学的には「言われてみればそうですね~」な事例ばかりなのですが、普段から可能性を頭に置いておかないと、ふとした拍子に気づきにくい話とも思えました。

良い面ばかりのみならず懸念面もあるのだ、ということを頭に置いておくことで、より適切な使用が行えるようになるのはどんな技術でも同じです。こういう情報は時間を見つけて適宜仕入れておきたいところですね。

関連文献

  1. Gillis, E. P.; Eastman, K. J.; Hill, M. D.; Donnelly, D. J.; Meanwell, N. A. J. Med. Chem. 2015, 58, 8315. doi:10.1021/acs.jmedchem.5b00258
  2. (a) Gouverneur, V.; Szpera, R.; Moseley, D. F. J.; Smith, L. B.; Sterling, A. J. Angew. Chem. Int. Ed. 2019, doi: 10.1002/anie.201814457 (b) Yang, L.; Dong, T.; Revankar, H. M.; Zhang, C.-P. Green Chem. 2017, 19, 3951. doi:10.1039/C7GC01566F

関連書籍

ケムステ関連記事

外部リンク

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 化学とウェブのフュージョン
  2. とある化学者の海外研究生活:イギリス編
  3. 二丁拳銃をたずさえ帰ってきた魔弾の射手
  4. 第20回次世代を担う有機化学シンポジウム
  5. 第一回ケムステVプレミアレクチャー「光化学のこれから ~ 未来を…
  6. タンパク質の定量法―紫外吸光法 Protein Quantifi…
  7. カルベンで挟む!
  8. ワールドクラスの日本人化学者が語る研究物語―『化学者たちの感動の…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 第一手はこれだ!:古典的反応から最新反応まで3 |第8回「有機合成実験テクニック」(リケラボコラボレーション)
  2. 三枝・伊藤酸化 Saegusa-Ito Oxidation
  3. フェントン反応 Fenton Reaction
  4. ギー・ベルトラン Guy Bertrand
  5. N,N,N’,N’-テトラメチルエチレンジアミン:N,N,N’,N’-Tetramethylethylenediamine
  6. 一流ジャーナルから学ぶ科学英語論文の書き方
  7. 分子集合の力でマイクロスケールの器をつくる
  8. 第69回―「炭素蒸気に存在する化学種の研究」Harold Kroto教授
  9. クラブトリー触媒 Crabtree’s Catalyst
  10. “秒”で分析 をあたりまえに―利便性が高まるSFC

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年7月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

注目情報

最新記事

日本薬学会  第143年会 付設展示会ケムステキャンペーン Part 2

第一弾に引き続き第二弾。薬学会付設展示会における協賛企業とのケムステコラボキャンペーンです。…

有機合成化学協会誌2023年3月号:Cynaropicri・DPAGT1阻害薬・トリフルオロメチル基・イソキサゾール・触媒的イソシアノ化反応

有機合成化学協会が発行する有機合成化学協会誌、2023年3月号がオンライン公開されました。早…

日本薬学会  第143年会 付設展示会ケムステキャンペーン Part 1

さて、日本化学会春季年会の付設展示会ケムステキャンペーンを3回にわたり紹介しましたが、ほぼ同時期に行…

推進者・企画者のためのマテリアルズ・インフォマティクスの組織推進の進め方 -組織で利活用するための実施例を紹介-

開催日:2023/03/22 申し込みはこちら■開催概要近年、少子高齢化、働き手の不足の…

日本化学会 第103春季年会 付設展示会ケムステキャンペーン Part3

Part 1・Part2に引き続き第三弾。日本化学会年会の付設展示会に出展する企業とのコラボです。…

第2回「Matlantis User Conference」

株式会社Preferred Computational Chemistryは、4月21日(金)に第2…

日本化学会 第103春季年会 付設展示会ケムステキャンペーン Part2

前回のPart 1に引き続き第二弾。日本化学会年会の付設展示会に出展する企業とのコラボです。…

マテリアルズ・インフォマティクスにおける従来の実験計画法とベイズ最適化の比較

開催日:2023/03/29 申し込みはこちら■開催概要近年、少子高齢化、働き手の不足の…

日本化学会 第103春季年会 付設展示会ケムステキャンペーン Part1

待ちに待った対面での日本化学会春季年会。なんと4年ぶりなんですね。今年は…

グアニジニウム/次亜ヨウ素酸塩触媒によるオキシインドール類の立体選択的な酸化的カップリング反応

第493回のスポットライトリサーチは、東京農工大学院 工学府生命工学専攻 生命有機化学講座(長澤・寺…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP