[スポンサーリンク]

化学者のつぶやき

創薬化学における「フッ素のダークサイド」

[スポンサーリンク]

フッ素は全元素中最大の電気陰性度を有するなど、化学的物性値に外れ値を示す事が多く、元素として特殊な扱いが成されます。

これを医薬構造中に入れこむことで、薬効を調節したり、疎水性を高めたり、代謝安定性を改善したり、動態追跡のPET応用に用いたり・・・などの良い効果があるとされています[1]。この有用性から「分子にフッ素を効率良く導入する反応」が歴史的にも沢山開発されてきています[2]。

しかしその一方で、フッ化医薬構造の分解により予期せぬ悪影響が生じてしまうことも指摘されています。この事例をNovartis社の研究員がまとめておりましたので、今回はこれを取り上げてみます。

”The Dark Side of Fluorine”
Pan, Y.  ACS Med. Chem. Lett. 2019, DOI: 10.1021/acsmedchemlett.9b00235

フッ化構造分解による悪影響

C-F結合は切れづらく(BDE=109 kcal/mol)、酸化的代謝も受けづらいため、とくに医薬構造に含まれる弱い結合を代替する目的で導入されます。

しかしながら耐性をもつのは均等開裂条件に対してであり、フッ素アニオンとして脱離していく不均等開裂条件に対しては案外脆いところがあります。壊れた骨格が毒性代謝物として働いたり、フッ素アニオンが骨集積することで、様々な副作用のもとになります。

SN2反応を介して分解する例

下記は生理的条件下で加水分解を起こしたり、生体内グルタチオンとの置換反応を起こしたりする構造例です。特に分子内に求核部位を持つ構造、ベンジル位やアリル位のように活性化されたC-F結合をもつ化合物の場合は注意が必要です。こういった傾向は立体障害基の導入に加え、ジフルオロメチル基・トリフルオロメチル基にすげ替えることで減ずることができるようです。

ヘテロ原子の非共有電子対関与で分解する例

非共有電子対の関与によってカルボカチオンが安定化される構造においては、CーF結合の分解が見られます。ビニロガス位のような遠隔でも効いてくるので要注意。窒素上への電子求引基の導入によってある程度抑制が可能です。

酸化的代謝がトリガーとなって分解する例

酸化的代謝がトリガーとなってフッ化水素を放出する経路も考えられます。 代謝物がしばしばマイケルアクセプター様構造となることも相まって、CYP阻害やグルタチオン付加体などの形成につながります。代謝標的になる水素をメチル化するなどの対応が取られます。

2-フルオロエチル基や1,3-ジフルオロ-2-プロピル基などは特別の注意が必要で、酸化的代謝によって猛毒のモノフルオロ酢酸が生成しえます(クエン酸回路の阻害物質として働く。半数致死量はシアン化ナトリウムと同程度)。

まとめ

化学的には「言われてみればそうですね~」な事例ばかりなのですが、普段から可能性を頭に置いておかないと、ふとした拍子に気づきにくい話とも思えました。

良い面ばかりのみならず懸念面もあるのだ、ということを頭に置いておくことで、より適切な使用が行えるようになるのはどんな技術でも同じです。こういう情報は時間を見つけて適宜仕入れておきたいところですね。

関連文献

  1. Gillis, E. P.; Eastman, K. J.; Hill, M. D.; Donnelly, D. J.; Meanwell, N. A. J. Med. Chem. 2015, 58, 8315. doi:10.1021/acs.jmedchem.5b00258
  2. (a) Gouverneur, V.; Szpera, R.; Moseley, D. F. J.; Smith, L. B.; Sterling, A. J. Angew. Chem. Int. Ed. 2019, doi: 10.1002/anie.201814457 (b) Yang, L.; Dong, T.; Revankar, H. M.; Zhang, C.-P. Green Chem. 2017, 19, 3951. doi:10.1039/C7GC01566F

関連書籍

[amazonjs asin=”4274506916″ locale=”JP” title=”創薬科学入門 ―薬はどのようにつくられる? (改訂2版)”][amazonjs asin=”1405167203″ locale=”JP” title=”Fluorine in Medicinal Chemistry and Chemical Biology”]

ケムステ関連記事

外部リンク

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. マイクロ波プロセスの工業化 〜環境/化学・ヘルスケア・電材領域で…
  2. 危ない試薬・面倒な試薬の便利な代替品
  3. “へぇー、こんなシンプルにできるんだっ!?”四級アンモニウム塩を…
  4. 【マイクロ波化学(株)医薬分野向けウェビナー】 #ペプチド #核…
  5. 中性ケイ素触媒でヒドロシリル化
  6. 分子の磁石 “化学コンパス” ~渡り鳥の…
  7. 電気刺激により電子伝導性と白色発光を発現するヨウ素内包カーボンナ…
  8. 水晶振動子マイクロバランス(QCM)とは~表面分析・生化学研究の…

注目情報

ピックアップ記事

  1. 有機機能材料 基礎から応用まで
  2. メタボ薬開発に道、脂肪合成妨げる化合物発見 京大など
  3. 招福豆ムクナの不思議(6)植物が身を護る化学物資
  4. アンモニアを窒素へ変換する触媒
  5. 有機スペクトル解析ワークブック
  6. 研究テーマ変更奮闘記 – PhD留学(後編)
  7. 高機能性金属錯体が拓く触媒科学:革新的分子変換反応の創出をめざして
  8. アリ・ワーシェル Arieh Warshel
  9. miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント
  10. ハイブリット触媒による不斉C–H官能基化

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年7月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

最新記事

異方的成長による量子ニードルの合成を実現

第693回のスポットライトリサーチは、東京大学大学院理学系研究科(佃研究室)の髙野慎二郎 助教にお願…

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

\課題に対してマイクロ波を試してみたい方へ/オンライン個別相談会

プロセスの脱炭素化及び効率化のキーテクノロジーである”マイクロ波”について、今回は、適用を検討してみ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP