[スポンサーリンク]

化学者のつぶやき

NHCが触媒する不斉ヒドロフッ素化

[スポンサーリンク]

キラルなNヘテロ環状カルベン(NHC)を触媒として用いたα,β不飽和アルデヒドに対する不斉ヒドロフッ素化反応が開発された。隣接する二つの不斉中心をもつフッ素化合物を一段階で合成できる。

不斉ヒドロフッ素化とNHC触媒

含フッ素化合物は高い代謝安定性や膜透過性を示すことが多いことから医農薬開発において積極的に導入される重要な化合物群であり、効率的なフッ素原子導入法の開発が世界中で精力的に行われている。

その中でも膨大な化学フィードストックであるオレフィンを出発原料とした直接的な不斉ヒドロフッ素化反応の有用性は高い。しかし、アルケンのヒドロフッ素化によって隣接する二つの不斉中心を構築することは化学/位置/立体選択性の制御を要するため挑戦的であり、報告例は少ない。

MacMillanらは、二つのキラルアミン触媒を使うことでα,β-不飽和アルデヒドに対する形式的なHF付加反応を高いエナンチオ/ジアステレオ選択性で達成している(Figure 1A)[1]。キラルアミン触媒から生成するイミニウムとエナミンが連続的な触媒サイクルを形成することで立体選択的にα,β位の二官能基化を実現できる。

一方でScheidtらは、N–ヘテロ環状カルベン(NHC)を有機触媒として用いて、ホモエノラート等価体を中間体として経由する、エナールのβ-不斉水素化を報告している(Figure 1B)[2]。また、Sun、Wangらは、脂肪族アルデヒドとNHC触媒から生成するアシルアゾリウム中間体と求電子的フッ素化剤を反応させることで、α-不斉フッ素化を達成している(Figure 1C)[3]

今回、北京大学深セン校のHuang教授らは、エナールとキラルNHC触媒1から生じるホモエノラート中間体のβ-水素化、続くアシルアゾリウム中間体からのα-フッ素化を連続的に行うことで、一段階での不斉ヒドロフッ素化を達成した(Figure 1D)。特筆すべきことに、β,β-二置換エナールを用いた際、高エナンチオかつジアステレオ選択的に反応が進行する。

Figure 1. 不斉ヒドロフッ素化とNHC触媒

Enantio- and Diastereoselective Hydrofluorination of Enals by N-Heterocyclic Carbene Catalysis”

Wang, L.; Jiang, X.; Chen, J.; Huang, Y. Angew. Chem., Int. Ed.2019, 58, 7410.

DOI: 10.1002/anie.201902989

論文著者の紹介

研究者:Yong Huang

研究者の経歴:
1993–1997 B.S.,Peking University, Department of Chemistry (Xiulin Ye)
1997–2002 M.S., Ph.D.,The University of Chicago (Viresh H. Rawal)
2002–2004 Postdoctoral Scholar, California Institute of Technology (David W. C. MacMillan)
2004–2009 Merck & Co., Senior Research Scientist
2009–presentPrinciple Investigator, Peking University, Shenzhen Graduate School

研究内容: 遷移金属及び有機触媒を用いた新規反応開発

論文の概要

著者らの作業仮説は以下の通りである(Figure 2A)。キラルNHC触媒とエナールから生じるホモエノラート等価体Iβ位でプロトン化が立体選択的に進行し、アシルアゾリウムIIとなる。続いて塩基性条件下、IIから生じたエノラートIIIの求電子的フッ素化が進行することでアシルアゾリウムIVとなる。最後にアルコールによってIVがエステル化され目的のα-フルオロエステルが得られる。

この作業仮説のもと、Huangらは各種エナールに対し非極性溶媒中、キラルNHC触媒4とSelectfluor®と二級アルコールを、プロトン移動化剤としてカルボン酸(塩)存在下反応させることで、望みの不斉ヒドロフッ素化が進行することを見出した(Figure 2B)。最適条件はβ-一置換エナール及びβ,β-二置換エナールで異なるが、例えばβ,β-二置換エナールに対する反応では、プロトン移動化剤としてキヌクリジンと1-AdCO2H/TFAを添加することで効率的に反応が進行している。β-一置換エナールの反応の詳細は論文を参照してほしい。

本反応では、副反応として①触媒サイクル中間体Iβ位フッ素化や、②IおよびIIのエステル化の競合が懸念される。①に関してはSelectfluor®の非極性溶媒に対する難溶性に着目し、非極性溶媒とSelectfluor®を併用することで解決した。②に関しては、嵩高い二級アルコールを用いることで抑制できた。プロトン移動化剤は、はじめのβ位の立体選択的プロトン化を促進する効果があると言及されている[4]

本反応は広範なβ,β-二置換エナールに適用できる(Figure 2C)。β-アリール上の置換基には単純なアルキル基(4a)、ハロゲンやトリフルオロメチル基などの電子求引基(4b, 4e)を用いることができる。さらに、β位がヘテロアリール(4c, 4d)で置換されていても問題なく反応は進行する。また、エキソサイクリックオレフィンをもつ基質へも適用でき(4e)、さらに、高反応性のハロゲン化アルキルを含むエナールを用いても良好な収率で目的物が得られる(4f)。

Figure2. (A)推定反応機構、(B)最適反応条件、(C)基質適用範囲

 

以上、NHCを触媒として用いたエナールの不斉ヒドロフッ素化が開発された。基質一般性が高く、温和な条件で反応が進行するため、合成終盤での応用が期待できる。

参考文献

  1. Huang, Y.; Walji, A. M.; Larsen, C. H.; MacMillan, D. W. C. J. Am. Chem. Soc. 2005, 127, 15051. DOI: 10.1021/ja055545d
  2. Wang, M. H.; Cohen, D. T.; Schwamb, C. B.; Mishra, R. K.; Scheidt, K. A. J. Am. Chem. Soc. 2015, 137, 5891. DOI: 10.1021/jacs.5b02887
  3. (a)Dong, X.; Yang, W.; Hu, W.; Sun, J. Angew. Chem., Int. Ed. 2015, 54, 660. DOI: 10.1002/anie.201409961 (b) Li, F.; Wu, Z.; Wang, J. Angew. Chem., Int. Ed. 2015, 54, 656. DOI: 10.1002/anie.201409473
  4. (a) Chen, J.; Yuan, P.; Wang, L.; Huang, Y. J. Am. Chem. Soc. 2017, 139, 7045. DOI: 10.1021/jacs.7b02889(b) Rauniyar, V.; Lackner, A. D.; Hamilton, G. L.; Toste, F. D. Science 2011, 334, 1681.DOI: 10.1126/science.1213918
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. アメリカの大学院で受ける授業
  2. 全合成研究は創薬化学のトレーニングになり得るか?
  3. 水分解反応のしくみを観測ー人工光合成触媒開発へ前進ー
  4. 投票!2015年ノーベル化学賞は誰の手に??
  5. 化学物質だけでiPS細胞を作る!マウスでなんと遺伝子導入なしに成…
  6. pH応答性硫化水素ドナー分子の開発
  7. ピレスロイド系殺虫剤のはなし
  8. 触媒なの? ?自殺する酵素?

注目情報

ピックアップ記事

  1. 有機合成化学協会誌6月号:ポリフィリン・ブチルアニリド・ヘテロ環合成・モノアシル酒石酸触媒・不斉ヒドロアリール化・機能性ポリペプチド
  2. 次世代電池の開発と市場予測について調査結果を発表
  3. ラリー・オーヴァーマン Larry E. Overman
  4. Essential Reagents for Organic Synthesis
  5. 理化学研究所上級研究員(創発デバイス研究チーム)募集
  6. 有機反応を俯瞰する ー芳香族求電子置換反応 その 2
  7. キニーネ きにーね quinine
  8. 有機化学美術館へようこそ―分子の世界の造形とドラマ
  9. 化学者のためのエレクトロニクス講座~無電解貴金属めっきの各論編~
  10. 加藤 昌子 Kato Masako

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年5月
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP