[スポンサーリンク]

一般的な話題

化学者のためのエレクトロニクス講座~無電解貴金属めっきの各論編~

[スポンサーリンク]

このシリーズでは、化学者のためのエレクトロニクス講座では半導体やその配線技術、フォトレジストやOLEDなど、エレクトロニクス産業で活躍する化学や材料のトピックスを詳しく掘り下げて紹介します。今回は電子回路の製造に欠かせない金、パラジウムをはじめ、各種無電解貴金属めっきの各論をご紹介します。

plating

モバイル端末に欠かせないめっき(画像:Flickr

無電解金めっき

・置換金めっき

無電解金めっきにおいては、あらかじめ形成しておいたニッケルなどの下地を置換することで薄い金皮膜を形成する置換金めっきがしばしば用いられます。これは卑金属がイオン化する際に溶液中の金イオンに電子を受け渡して析出させるもので、金属樹と同様の原理です。

金属樹(銅樹、画像:Wikipedia

置換めっきでは下地の卑金属が完全に被覆されるとそれ以上は厚くならないことから、一般には0.25 μm程度までの薄い被膜しか形成できず、ピンホールなどの欠陥が問題となるケースもあります。その一方で、めっき液中に還元剤を含まないことから安定性の高さが長所で、長期保管が可能とされます。

置換金めっき浴はシアン浴ノンシアン浴に大別されます。シアン浴はシアン化金カリウムK[Au(CN)2]を主成分とする浴で、ほかにシアン酸化合物や遊離シアン源となるNaCNなどを含みます。もっともオーソドックスな組成ですが、極めて塩基性であることからレジストなどを溶解してしまう恐れもあります。

ノンシアン浴はこの点を改良したもので、金の錯化剤(配位子)として亜硫酸イオンメルカプトコハク酸などを利用しています。安定性ではシアン浴に劣りますが、多くが中性で幅広い用途に利用できるのが強みです。

・還元金めっき

還元剤による自己触媒反応によって析出する一般的な無電解めっきです。置換めっきと比較して厚付けが可能で、それゆえワイヤボンディングなどの用途に用いられています。一方で安定性には難があるものもあり、めっき速度の向上を図ると安定性が悪化しやすくなるというジレンマを抱えています。

ワイヤボンディング部分には軟質金が用いられます(画像:Wikipedia

金イオンは様々な還元剤によって自己触媒的に単体金として析出することから、浴の種類は比較的豊富です。シアン浴ではヒドラジンホルムアルデヒド、ホウ素系還元剤(KBH4DMAB)など、ニッケルや銅と比較してそのバリエーションの広さがお分かりになるかと思います。

また、還元金めっき浴においてもシアン化合物を含まないノンシアン浴の需要が高まっています。代表的なものに、錯化剤としてクエン酸、還元剤にジエチルグリシンを用いる浴があり、利用が進んでいます。

無電解パラジウムめっき

高い耐食性を誇り、金や銅のようには拡散しないことから配線層の金めっきの下地として、内部金属を保護しつつ金の使用量を低減(省金化)するために用いられるのがパラジウムです。とはいえパラジウムも貴金属であり、その鉱床はロシアや南アフリカに偏在していることから価格が不安定で、政治的要因によって供給難に陥りやすい欠点もあります。近年ではロシアによるウクライナ侵攻の影響のほか南アフリカでの産出量も減少傾向にあり、価格も高止まりを見せています。

パラジウム価格の急騰(画像:Wikipedia

とはいえ、(従来の価格であれば貴金属としてはルテニウムに次いで安価なことから)パラジウムを用いることでトータルコストを抑えられることから重宝されており、はんだ付け性ワイヤボンディング性に優れることから広範に利用されています。

パラジウムは電解めっきにおいては水素脆化が大きな課題となりますが、無電解めっきではその抑制が可能な条件が広がります。周期表で一つ上に位置するニッケルと類似した浴組成が用いられます。

最も一般的なのが次亜リン酸浴です。次亜リン酸自身の還元も並行して進行するためPd-P合金となり、これは硬度の高さが特徴であることから物理的な外力の加わる部位にも適しています。錯化剤としてエチレンジアミン(en、安定剤としてチオジグリコール酸(TDGを含むものです。

また、トリメチレンアミンボラン(TMAB)浴を用いることにより、ピンホールが少なく耐食性に優れたPd-B合金を得ることも可能です。無電解ニッケルと置換金(ENIG)の間にPd層を導入する際(ENEPIG)のパラジウム被膜として多く採用されています。

純粋なパラジウムを得るためには還元剤としてギ酸を用いるのが適当です。錯化剤としてはエチレンジアミンやグルタミン酸、アスパラギン酸などが用いられます。ただし純粋なパラジウムは水素脆化などの課題を抱えており、ニッケルとの合金とする例が一般的です。

・・・

長くなりましたのでこのあたりで区切ります。次回は合金めっきや複合めっきなど、産業界を支える特殊なめっき技術を紹介します。お楽しみに!

関連書籍

 

gaming voltammetry

berg

投稿者の記事一覧

化学メーカー勤務。学生時代は有機をかじってました⌬
電気化学、表面処理、エレクトロニクスなど、勉強しながら執筆していく予定です

関連記事

  1. 視覚を制御する物質からヒントを得た異性化反応
  2. コロナウイルスCOVID-19による化学研究への影響を最小限にす…
  3. 推進者・企画者のためのマテリアルズ・インフォマティクスの組織推進…
  4. 実験器具・設備の価格を知っておきましょう
  5. ファージディスプレイでシステイン修飾法の配列選択性を見いだす
  6. 紹介会社を使った就活
  7. 第三回 ケムステVシンポ「若手化学者、海外経験を語る」を開催しま…
  8. 第24回ACSグリーンケミストリー&エンジニアリング会…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 研究助成金及び海外留学補助金募集:公益財団法人アステラス病態代謝研究会
  2. 首席随員に野依良治氏 5月の両陛下欧州訪問
  3. 昆虫細胞はなぜ室温で接着するのだろう?
  4. 第66回―「超分子集合体と外界との相互作用を研究する」Francesco Stellacci教授
  5. 研究室でDIY!~光反応装置をつくろう~
  6. ゾル-ゲル変化を自ら繰り返すアメーバのような液体の人工合成
  7. 子ども向け化学啓発サイト「うちラボ」オープン!
  8. その病気、市販薬で治せます
  9. 第16回日本化学連合シンポジウム「withコロナ時代における化学への期待」
  10. 第133回―「遺伝暗号リプログラミングと翻訳後修飾の研究」Jason Chin教授

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年1月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

最新記事

(+)-Pleiocarpamineの全合成と新規酸化的カップリング反応を基盤とした(+)-voacalgine Aおよび(+)-bipleiophyllineの全合成

第564回のスポットライトリサーチは、東北大学大学院薬学研究科分子薬科学専攻・医薬製造化学分野(徳山…

ResearchGateに対するACSとElsevierによる訴訟で和解が成立

2023年9月15日、米国化学会(ACS)とElsevier社がResearchGateに対して起こ…

マテリアルズ・インフォマティクスの基礎知識とよくある誤解

開催日:2023/10/04 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

理研、放射性同位体アスタチンの大量製造法を開発

理化学研究所 仁科加速器科学研究センター 核化学研究開発室、金属技研株式会社 技術開発本部 エン…

マイクロ波プロセスを知る・話す・考える ー新たな展望と可能性を探るパネルディスカッションー

<内容>参加いただくみなさまとご一緒にマイクロ波プロセスの新たな展望と可能性について探る、パ…

SFTSのはなし ~マダニとその最新情報 後編~

注意1:この記事は人によってはやや苦手と思われる画像を載せております ご注意ください注意2:厚生…

様々な化学分野におけるAIの活用

ENEOS株式会社と株式会社Preferred Networks(PFN)は、2023年1月に石油精…

第8回 学生のためのセミナー(企業の若手研究者との交流会)

有機合成化学協会が学生会員の皆さんに贈る,交流の場有機化学を武器に活躍する,本当の若手研究者を知ろう…

UBEの新TVCM『ストーリーを変える、ケミストリー』篇、放映開始

UBE株式会社は、2023年9月1日より、新TVCM『ストーリーを変える、ケミストリー』篇を関東エリ…

有機合成化学協会誌2023年9月号:大村天然物・ストロファステロール・免疫調節性分子・ニッケル触媒・カチオン性芳香族化合物

有機合成化学協会が発行する有機合成化学協会誌、2023年9月号がオンライン公開されています。…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP