[スポンサーリンク]

化学者のつぶやき

触媒なの? ?自殺する酵素?

触媒とは、特定の化学反応の速度定数を早める物質で、自身は反応の前後で変化しないものです。また、生体内で起こる化学反応を触媒する分子を酵素と言います。

 

今回、これらの定義からはずれるsingle turnoverの酵素を紹介したいと思います。single turnoverって触媒じゃ無いじゃんと思うかもしれませんが、、、

 

Abhishek Chatterjee, N. Dinuka Abeydeera, Shridhar Bale, Pei-Jing Pai, Pieter C. Dorrestein, David H. Russell, Steven E. Ealick and Tadhg P. Begley, Nature 478, 542–546 (2011). doi:10.1038/nature10503

チアミン thiamine

チアミン thiamineはビタミンB1とも呼ばれています。補酵素型はthiamine pyrophosphate(TPP)と呼ばれ、図に示す構造をしています。バクテリア、植物、酵母などはthiamineを自身で生合成できるのに対し、人間は外部から摂取しなければなりません。

TPP biosynthesis.png

TPPの構造的な特徴は、thiazole環とpyrimidine環です。この二つのヘテロ環の生合成について、長い間研究が行われて来ました。そして現在、原核生物と真核生物では生合成機構が違うことが明らかとなっています。

 

今回紹介するTHI4とTHI5というタンパク質はそれぞれ、真核生物のTPPのthiazole環、pyrimidine環の生合成に関与しています。このタンパク質の反応機構は注目に値するものであり、nature誌では’’Suicide of a protein’’(自殺する酵素)として紹介されました。

 

THI4

真核生物において、TPPのthiazole環は、nicotinamide adenine dinucleotide (NAD)、glycine、cysteineを原料として合成されます。このcysteineですが、タンパク質(THI4)の活性部位のアミノ酸残基由来なのです。

つまり、THI4はthiazole環の生成に際し、活性残基であるcysを失ってしまうのです。そのため、THI4はsingle turnoverなのです。このような反応機構は大変珍しく、この点に於いて原核生物のTPPの生合成と大きく異なっています。

THI4.png

 

THI5

pyrimidine環の生合成ですが、Histidineとpyridoxal phosphate(PLP)が原料です。原核生物の生合成と異なり、真核生物のTPPの生合成におけるHistidineは、タンパク質(THI5)の活性部位のアミノ酸残基由来です。

THI5 His.png

反応機構ですが、まずPLPがLys62とimine中間体を形成してTHI5と結合します。その後、His66が反応します。PLPとTHI5の中間体の結晶も取られており、反応中間体は下に示すようになっています。

THI5 crystal structure.gif

 

反応後のタンパク質は?

THI4,THI5ともに4万近い分子量があります。ヘテロ環生合成の硫黄や窒素を供給するためだけに、生体はなぜわざわざTHI4,THI5のようなタンパク質を合成するのでしょうか?反応後のこの酵素が、速やかに分解され、アミノ酸が再利用される、ということはありません。なぜ生体は、このような手間のかかる方法を選んだのでしょうか?

 

そのひとつの理由として論文の筆者らは、次のように論じています。「THI4pは、DNAの保護やストレス応答に関係していて、過剰になったFeを運搬する働きがある」と。

ある反応で役目を果たしたタンパク質が、また別の反応で働くとしたら、生体システムは本当によくできていると思います。

 

自殺する酵素?

THI4、THI5の関わる反応は触媒反応ではないので、THI4、THI5は酵素ではありません。今回紹介したTHI4やTHI5のようなdonor proteinは、従来の酵素に対して’’自殺する酵素’’と呼ぶべきかもしれないとnature誌で紹介されてました。

生体が、なぜこのような生合成経路を選択したのか、また、なぜ原核生物と真核生物で生合成経路が違うのかについて研究してみたら面白いかもしれません。

 

参考文献

  1. Abhishek Chatterjee, N. Dinuka Abeydeera, Shridhar Bale, Pei-Jing Pai, Pieter C. Dorrestein, David H. Russell, Steven E. Ealick and Tadhg P. Begley, Nature 478, 542–546 (2011)
  2. Peter Roach, Nature 478, 463-464 (2011)
  3. Lai RY, Huang S, Fenwick MK, Hazra AB, Zhang Y, Rajashankar KR, Philmus B, Kinsland C, Sanders JM, Ealick SE, and Begley TP. Thiamin pyrimidine biosynthesis inCandida albicans: a remarkable reaction between histidine and pyridoxal phosphate. J. Am. Chem. Soc. 134:9157−9159. (2012)

 

関連書籍

The following two tabs change content below.
ゼロ

ゼロ

女の子。研究所勤務。趣味は読書とハイキング ♪ ハンドルネームは村上龍の「愛と幻想のファシズム」の登場人物にちなんでま〜す。5 分後の世界、ヒュウガ・ウイルスも好き!

関連記事

  1. Slow down, baby, now you’r…
  2. 付設展示会に行こう!ー和光純薬編ー
  3. 2007年度ノーベル化学賞を予想!(2)
  4. 実験化学のピアレビューブログ: Blog Syn
  5. 細胞表面受容体の機能解析の新手法
  6. 「炭素-炭素結合を切って組み替える合成」テキサス大学オースティン…
  7. 生きた細胞内でケイ素と炭素がはじめて結合!
  8. クロスカップリング反応ーChemical Times特集より

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ヘリウム Helium -空気より軽い! 超伝導磁石の冷却材
  2. 高分子と高分子の反応も冷やして加速する
  3. ノーベル化学賞 のーべるかがくしょう Nobel Prize in Chemistry
  4. まっすぐなペプチドがつまらないなら「さあ輪になって踊ろ!」
  5. スナップ試薬 SnAP Reagent
  6. 呉羽化学、社名を「クレハ」に
  7. エステル、アミド、ニトリルの金属水素化物による部分還元 Partial Reduction of Esters, Amides nad Nitriles with Metal Hydride
  8. CTCLS、製薬業界向けに医薬品の探索研究に特化した電子実験ノートブックを販売
  9. 天然物の全合成―2000~2008
  10. 安全なジアゾメタン原料

関連商品

注目情報

注目情報

最新記事

ルミノール誘導体を用いるチロシン選択的タンパク質修飾法

2015年、東京工業大学・中村浩之らは、ルミノール誘導体と鉄-ポルフィリン複合体(ヘミン)を用い、チ…

酵素触媒によるアルケンのアンチマルコフニコフ酸化

酵素は、基質と複数点で相互作用することにより、化学反応を厳密にコントロールしています。通常のフラ…

イオンの出入りを制御するキャップ付き分子容器の開発

第124回のスポットライトリサーチは、金沢大学 理工研究域物質化学系錯体化学研究分野(錯体化学・超分…

リチウムイオン電池の課題のはなし-1

Tshozoです。以前リチウムイオン電池に関するトピックを2つほど紹介した(記事:リチウムイ…

アルコールをアルキル化剤に!ヘテロ芳香環のC-Hアルキル化

2015年、プリンストン大学・D. W. C. MacMillanらは、水素移動触媒(HAT)および…

三種類の分子が自発的に整列した構造をもつ超分子共重合ポリマーの開発

第123回のスポットライトリサーチは、テキサス大学オースティン校博士研究員(Jonathan L. …

Chem-Station Twitter

PAGE TOP