[スポンサーリンク]

化学者のつぶやき

触媒なの? ?自殺する酵素?

[スポンサーリンク]

触媒とは、特定の化学反応の速度定数を早める物質で、自身は反応の前後で変化しないものです。また、生体内で起こる化学反応を触媒する分子を酵素と言います。

 

今回、これらの定義からはずれるsingle turnoverの酵素を紹介したいと思います。single turnoverって触媒じゃ無いじゃんと思うかもしれませんが、、、

 

Abhishek Chatterjee, N. Dinuka Abeydeera, Shridhar Bale, Pei-Jing Pai, Pieter C. Dorrestein, David H. Russell, Steven E. Ealick and Tadhg P. Begley, Nature 478, 542–546 (2011). doi:10.1038/nature10503

チアミン thiamine

チアミン thiamineはビタミンB1とも呼ばれています。補酵素型はthiamine pyrophosphate(TPP)と呼ばれ、図に示す構造をしています。バクテリア、植物、酵母などはthiamineを自身で生合成できるのに対し、人間は外部から摂取しなければなりません。

TPP biosynthesis.png

TPPの構造的な特徴は、thiazole環とpyrimidine環です。この二つのヘテロ環の生合成について、長い間研究が行われて来ました。そして現在、原核生物と真核生物では生合成機構が違うことが明らかとなっています。

 

今回紹介するTHI4とTHI5というタンパク質はそれぞれ、真核生物のTPPのthiazole環、pyrimidine環の生合成に関与しています。このタンパク質の反応機構は注目に値するものであり、nature誌では’’Suicide of a protein’’(自殺する酵素)として紹介されました。

 

THI4

真核生物において、TPPのthiazole環は、nicotinamide adenine dinucleotide (NAD)、glycine、cysteineを原料として合成されます。このcysteineですが、タンパク質(THI4)の活性部位のアミノ酸残基由来なのです。

つまり、THI4はthiazole環の生成に際し、活性残基であるcysを失ってしまうのです。そのため、THI4はsingle turnoverなのです。このような反応機構は大変珍しく、この点に於いて原核生物のTPPの生合成と大きく異なっています。

THI4.png

 

THI5

pyrimidine環の生合成ですが、Histidineとpyridoxal phosphate(PLP)が原料です。原核生物の生合成と異なり、真核生物のTPPの生合成におけるHistidineは、タンパク質(THI5)の活性部位のアミノ酸残基由来です。

THI5 His.png

反応機構ですが、まずPLPがLys62とimine中間体を形成してTHI5と結合します。その後、His66が反応します。PLPとTHI5の中間体の結晶も取られており、反応中間体は下に示すようになっています。

THI5 crystal structure.gif

 

反応後のタンパク質は?

THI4,THI5ともに4万近い分子量があります。ヘテロ環生合成の硫黄や窒素を供給するためだけに、生体はなぜわざわざTHI4,THI5のようなタンパク質を合成するのでしょうか?反応後のこの酵素が、速やかに分解され、アミノ酸が再利用される、ということはありません。なぜ生体は、このような手間のかかる方法を選んだのでしょうか?

 

そのひとつの理由として論文の筆者らは、次のように論じています。「THI4pは、DNAの保護やストレス応答に関係していて、過剰になったFeを運搬する働きがある」と。

ある反応で役目を果たしたタンパク質が、また別の反応で働くとしたら、生体システムは本当によくできていると思います。

 

自殺する酵素?

THI4、THI5の関わる反応は触媒反応ではないので、THI4、THI5は酵素ではありません。今回紹介したTHI4やTHI5のようなdonor proteinは、従来の酵素に対して’’自殺する酵素’’と呼ぶべきかもしれないとnature誌で紹介されてました。

生体が、なぜこのような生合成経路を選択したのか、また、なぜ原核生物と真核生物で生合成経路が違うのかについて研究してみたら面白いかもしれません。

 

参考文献

  1. Abhishek Chatterjee, N. Dinuka Abeydeera, Shridhar Bale, Pei-Jing Pai, Pieter C. Dorrestein, David H. Russell, Steven E. Ealick and Tadhg P. Begley, Nature 478, 542–546 (2011)
  2. Peter Roach, Nature 478, 463-464 (2011)
  3. Lai RY, Huang S, Fenwick MK, Hazra AB, Zhang Y, Rajashankar KR, Philmus B, Kinsland C, Sanders JM, Ealick SE, and Begley TP. Thiamin pyrimidine biosynthesis inCandida albicans: a remarkable reaction between histidine and pyridoxal phosphate. J. Am. Chem. Soc. 134:9157−9159. (2012)

 

関連書籍

ゼロ

投稿者の記事一覧

女の子。研究所勤務。趣味は読書とハイキング ♪
ハンドルネームは村上龍の「愛と幻想のファシズム」の登場人物にちなんでま〜す。5 分後の世界、ヒュウガ・ウイルスも好き!

関連記事

  1. Grignard反応剤が一人二役!? 〜有機硫黄化合物を用いる<…
  2. クオラムセンシング阻害活性を有する新規アゾキシアルケン化合物の発…
  3. その電子、私が引き受けよう
  4. 磁性流体アートの世界
  5. 有機合成化学の豆知識botを作ってみた
  6. NMRのプローブと測定(Bruker編)
  7. オープンアクセス論文が半数突破か
  8. 微小な前立腺がんを迅速・高感度に蛍光検出する

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. リガンド指向性化学を用いたGABAA受容体の新規創薬探索法の開発
  2. トム・スタイツ Thomas A. Steitz
  3. 有機分子・バイオエレクトロニクス分科会(M&BE) 新分野開拓研究会2023 「電子とイオンの織りなすサイエンス: 材料・デバイス・センシング」
  4. 世界の中心で成果を叫んだもの
  5. 単純なアリルアミンから複雑なアリルアミンをつくる
  6. ⽔を嫌う CH₃-基が⽔をトラップする︖⽣体浸透圧調整物質 TMAO の機能溶液化学を、分⼦間相互作⽤の時空間精細解析で解明
  7. PdとTiがVECsの反応性をひっくり返す?!
  8. edXで京都大学の無料講義配信が始まる!
  9. 大村 智 Satoshi Omura
  10. ビニルシクロプロパン転位 Vinylcyclopropane Rearrangement

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2012年7月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

最新記事

マテリアルズ・インフォマティクスにおける回帰手法の基礎

開催日:2023/12/06 申込みはこちら■開催概要マテリアルズ・インフォマティクスを…

プロトン共役電子移動を用いた半導体キャリア密度の精密制御

第582回のスポットライトリサーチは、物質・材料研究機構(NIMS) ナノアーキテクトニクス材料研究…

有機合成化学協会誌2023年11月号:英文特別号

有機合成化学協会が発行する有機合成化学協会誌、2023年11月号がオンライン公開されています。…

高懸濁試料のろ過に最適なGFXシリンジフィルターを試してみた

久々の、試してみたシリーズ。今回試したのはアドビオン・インターチム・サイエンティフィ…

細胞内で酵素のようにヒストンを修飾する化学触媒の開発

第581回のスポットライトリサーチは、東京大学大学院 薬学系研究科 有機合成化学教室(金井研究室)の…

カルロス・シャーガスのはなし ーシャーガス病の発見者ー

Tshozoです。今回の記事は8年前に書こうと思って知識も資料も足りずほったらかしておいたのです…

巨大な垂直磁気異方性を示すペロブスカイト酸水素化物の発見 ―水素層と酸素層の協奏効果―

第580回のスポットライトリサーチは京都大学大学院工学研究科物質エネルギー化学専攻 陰山研究室の難波…

2023年度第1回日本化学連合シンポジウム「ヒューメインな化学 ~感覚の世界に化学はどう挑むか~」

人間の幸福感は、五感に依るところが大きい。化学は文明的で健康的な社会を支える物質を継続的に産み出して…

超難溶性ポリマーを水溶化するナノカプセル

第579回のスポットライトリサーチは東京工業大学 化学生命科学研究所 吉沢・澤田研究室の青山 慎治(…

目指せ抗がん剤!光と転位でインドールの(逆)プレニル化

可視光レドックス触媒を用いた、インドール誘導体のジアステレオ選択的な脱芳香族的C3位プレニル化および…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP