[スポンサーリンク]

化学者のつぶやき

可視光照射でトリメチルロックを駆動する

[スポンサーリンク]

カリフォルニア工科大学・Dennis A. Doughertyらは、光照射で脱保護されるアミン or アルコールの保護基「キノントリメチルロック」を開発した。置換基(Y)を変更することで400-600 nmの長波長光で駆動可能。副生物は吸光性を示さない。続報にて詳細な機構解析も報告している。

① “A General Strategy for Visible-Light Decaging Based on the Quinone Trimethyl Lock”
Walton, D. P.; Dougherty, D. A.* J. Am. Chem. Soc. 2017, 139, 4655−4658. DOI: 10.1021/jacs.7b01548
② “Mechanistic Studies of the Photoinduced Quinone Trimethyl Lock Decaging Process”
Regan, C. J.; Walton, D. P.; Shafaat, O. S.; Dougherty, D. A.* J. Am. Chem. Soc. 2017, 139, 4729-4736. DOI: 10.1021/jacs.6b12007

問題設定

トリメチルロック[1]は様々に誘導化可能な保護基として幅広い応用に用いられてきた。しかしながら光化学的にトリメチルロックを駆動する目的にはUVの使用(ニトロベンジル保護体を用いるなど)が前提されていた。長波長光で駆動される分子は、生体組織浸透性などもろもろの文脈から魅力があるが、金属フリーで長波長吸収(>450nm)をもつ保護基はそもそもバリエーションが少ない[2]。

技術や手法の肝

Doughertyらは、光誘起型電子移動を介して、キノン構造をヒドロキノンへと還元し、トリメチルロックを駆動させることを考えた。キノン型トリメチルロックをチオ硫酸ナトリウムなどで還元して熱的に駆動するコンセプトは既知である。またキノンをアミンやスルフィドで光還元できることも既知である[3]。しかしながら両者を組み合わせて可視光駆動型トリメチルロックに仕立てた先例は存在しない。

主張の有効性検証

①化合物の設計と合成

ブロモキノンカルボン酸中間体に対してアミン・スルフィドを合成終盤で付加させて、様々なキノントリメチルロックを合成した。水溶性をあげる目的で、糖をつけておくこともできる。合成されたものはいずれも可視光吸収を持つ。

②光駆動性の実証

スルフィド型は455nm LED照射にて綺麗に切断され、アルコールが定量的に放出される。アミン型はより長波長に吸収を持つため、565nm LEDを使う。こちらは非極性溶媒中でも実施可能。いずれもSまたはN原子に隣接する活性C-Hを切りながら反応が進行する(Norrish Type II反応)ので、ここのBDEが低いものほど反応が速くなる(ベンジル置換 >アルキル置換)。

放出されるXの部分としてアルコールの代わりにアミンも活用可能。クマリン(λex=355 nm)を用いて蛍光モニタリングしたり、GABAを放出させてアフリカツメガエル(Xenopus oocytes)の細胞を駆動させたりもしている。また、スルフィド型が長波長吸収を持たないことを利用し、アミン型だけを長波長光で選択的に駆動させることにも成功している。

③メカニズム解析

スルフィド型キノントリメチルロックを用いて詳細な反応機構解析がなされている。多数の実験事実を元にした綿密な考察が行なわれているが、ここでは詳細は割愛し、結論だけを要約したい。

【1】律速段階について

おおまなか機構はこれまでに再三示しているとおりである。つまり、光誘起電子移動が起きた後にC-H切断が起こり、zwitterionic中間体が生じる。これがフェノール酸素や溶媒にトラップされ、トリメチルロックが駆動してdecagingが進行する。このトリメチルロック環化過程がもっとも遅いステップである。しばしば環化前のヒドロキノン体が単離されることからこれは支持される。

【2】中間体構造について

「Ionic pathwayを経由するのか、radicalic pathwayを経るのか」が主たる議論の的になっている。結論としては、ionic pathway経由で、zwitterionを与えるスキーム上部の経路が最もあり得るメカニズムと判断されている。詳しい議論は冒頭論文②を参照されたい。

議論すべき点

  • トリメチルロック部位と光学的に干渉してしまうような光駆動性分子でも、放出対象として使用可能かは気になる。今回の系では波長が被らないクマリンで実証実験を行なっている。
  • 硫黄・アミン部に様々な機能部位(溶解性向上・膜透過性向上・生態分布制御など)を持たせることが可能なのは利点。

未解決問題へのアプローチ

  • 次なる目標は近赤外レベルの長波長駆動だと思われる。組織深部に到達する光には650-1300 nmが必要と言われている(血中ヘム、水、脂質、メラニンいずれにも吸収されない波長帯)[4]。π系拡張によるStokes Shiftはもっとも簡単に行える設計だが、応じて溶解性や生体適合性の低下が問題になりがちである。Si, B, Pの導入などでπ系を伸長させず長波長化を達成する最近の設計トレンドは参考にできるか。

参考文献

  1. Review: Levine, M. N.; Raines, R. T. Chem. Sci. 2012, 3, 2412. doi:10.1039/C2SC20536J
  2. Review for photoremovable PGs: (a) Klán, P.; Šolome, T.; Bochet, C. G.; Blanc, A.; Givens, R.; Rubina, M.; Popik, V.; Kostikov, A.; Wirz, J. Chem. Rev. 2013, 113, 119. DOI: 10.1021/cr300177k (b) Hansen, M. J.; Velema, W. A.; Lerch, M. M.; Szymanski, W.; Feringa, B. L. Chem. Soc. Rev. 2015, 44, 3358.  doi:10.1039/C5CS00118H
  3. 冒頭論文①、ref30-44
  4. Near-infrared window in biological tissue – Wikipedia

 

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 2022 CAS Future Leaders プログラム参加者…
  2. Nrf2とKeap1 〜健康維持と長寿のカギ?〜
  3. ストックホルム国際青年科学セミナー参加学生を募集開始 ノーベル賞…
  4. 光触媒ラジカル付加を鍵とするスポンギアンジテルペン型天然物の全合…
  5. 研究者×Sigma-Aldrichコラボ試薬 のポータルサイト
  6. 小さなフッ素をどうつまむのか
  7. 超原子価ヨウ素試薬PIFAで芳香族アミドをヒドロキシ化
  8. 【追悼企画】生命現象の鍵を追い求めてー坂神洋次教授

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. オカモト株式会社茨城工場
  2. MNBA脱水縮合剤
  3. マーティンスルフラン Martin’s Sulfurane
  4. カスケード反応 Cascade Reaction
  5. 【ジーシー】新卒採用情報(2023卒)
  6. 【第11回Vシンポ特別企画】講師紹介①:東原 知哉 先生
  7. 第13回ケムステVシンポジウム「創薬化学最前線」を開催します!
  8. 無保護環状アミンをワンポットで多重官能基化する
  9. プレプリントサーバについて話そう:Emilie Marcusの翻訳
  10. パラジウムの市場価格が過去最高値を更新。ケミストへの影響は?

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年12月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

注目情報

最新記事

表面酸化した銅ナノ粒子による低温焼結に成功~銀が主流のプリンテッドエレクトロニクスに、銅という選択肢を提示~

第393回のスポットライトリサーチは、北海道大学 大学院工学院 材料科学専攻 マテリアル設計講座 先…

高分子材料におけるマテリアルズ・インフォマティクスの活用とは?

 申込みはこちら■セミナー概要本動画は、20022年5月18日に開催されたセミナー「高分…

元素のふるさと図鑑

2022年も折り返しに差し掛かりました。2022年は皆さんにとってどんな年になり…

Q&A型ウェビナー カーボンニュートラル実現のためのマイクロ波プロセス 〜ケミカルリサイクル・乾燥・濃縮・焼成・剥離〜

<内容>本ウェビナーでは脱炭素化を実現するための手段として、マイクロ波プロセスをご紹介いたします…

カルボン酸、窒素をトスしてアミノ酸へ

カルボン酸誘導体の不斉アミノ化によりキラルα-アミノ酸の合成法が報告された。カルボン酸をヒドロキシル…

海洋シアノバクテリアから超強力な細胞増殖阻害物質を発見!

第 392回のスポットライトリサーチは、慶應義塾大学大学院 理工学研究科 博士後期課…

ポンコツ博士の海外奮闘録⑧〜博士,鍵反応を仕込む②〜

ポンコツシリーズ一覧国内編:1話・2話・3話国内外伝:1話・2話・留学TiPs海外編:1…

給電せずに電気化学反応を駆動 ~環境にやさしい手法として期待、極限環境での利用も~

第391回のスポットライトリサーチは、東京工業大学物質理工学院応用化学系 稲木研究室の岩井 優 (い…

GCにおける水素のキャリアガスとしての利用について

最近ヘリウムの深刻な供給不安により、GCで使うガスボンベの納期が未定となってしまい、ヘリウムが無くな…

タンパク質リン酸化による液-液相分離制御のしくみを解明 -細胞内非膜型オルガネラの構築原理の解明へ-

第 390 回のスポットライトリサーチは、東京大学大学院 理学系研究科 助教の 山崎…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP