[スポンサーリンク]

化学者のつぶやき

可視光照射でトリメチルロックを駆動する

[スポンサーリンク]

カリフォルニア工科大学・Dennis A. Doughertyらは、光照射で脱保護されるアミン or アルコールの保護基「キノントリメチルロック」を開発した。置換基(Y)を変更することで400-600 nmの長波長光で駆動可能。副生物は吸光性を示さない。続報にて詳細な機構解析も報告している。

① “A General Strategy for Visible-Light Decaging Based on the Quinone Trimethyl Lock”
Walton, D. P.; Dougherty, D. A.* J. Am. Chem. Soc. 2017, 139, 4655−4658. DOI: 10.1021/jacs.7b01548
② “Mechanistic Studies of the Photoinduced Quinone Trimethyl Lock Decaging Process”
Regan, C. J.; Walton, D. P.; Shafaat, O. S.; Dougherty, D. A.* J. Am. Chem. Soc. 2017, 139, 4729-4736. DOI: 10.1021/jacs.6b12007

問題設定

トリメチルロック[1]は様々に誘導化可能な保護基として幅広い応用に用いられてきた。しかしながら光化学的にトリメチルロックを駆動する目的にはUVの使用(ニトロベンジル保護体を用いるなど)が前提されていた。長波長光で駆動される分子は、生体組織浸透性などもろもろの文脈から魅力があるが、金属フリーで長波長吸収(>450nm)をもつ保護基はそもそもバリエーションが少ない[2]。

技術や手法の肝

Doughertyらは、光誘起型電子移動を介して、キノン構造をヒドロキノンへと還元し、トリメチルロックを駆動させることを考えた。キノン型トリメチルロックをチオ硫酸ナトリウムなどで還元して熱的に駆動するコンセプトは既知である。またキノンをアミンやスルフィドで光還元できることも既知である[3]。しかしながら両者を組み合わせて可視光駆動型トリメチルロックに仕立てた先例は存在しない。

主張の有効性検証

①化合物の設計と合成

ブロモキノンカルボン酸中間体に対してアミン・スルフィドを合成終盤で付加させて、様々なキノントリメチルロックを合成した。水溶性をあげる目的で、糖をつけておくこともできる。合成されたものはいずれも可視光吸収を持つ。

②光駆動性の実証

スルフィド型は455nm LED照射にて綺麗に切断され、アルコールが定量的に放出される。アミン型はより長波長に吸収を持つため、565nm LEDを使う。こちらは非極性溶媒中でも実施可能。いずれもSまたはN原子に隣接する活性C-Hを切りながら反応が進行する(Norrish Type II反応)ので、ここのBDEが低いものほど反応が速くなる(ベンジル置換 >アルキル置換)。

放出されるXの部分としてアルコールの代わりにアミンも活用可能。クマリン(λex=355 nm)を用いて蛍光モニタリングしたり、GABAを放出させてアフリカツメガエル(Xenopus oocytes)の細胞を駆動させたりもしている。また、スルフィド型が長波長吸収を持たないことを利用し、アミン型だけを長波長光で選択的に駆動させることにも成功している。

③メカニズム解析

スルフィド型キノントリメチルロックを用いて詳細な反応機構解析がなされている。多数の実験事実を元にした綿密な考察が行なわれているが、ここでは詳細は割愛し、結論だけを要約したい。

【1】律速段階について

おおまなか機構はこれまでに再三示しているとおりである。つまり、光誘起電子移動が起きた後にC-H切断が起こり、zwitterionic中間体が生じる。これがフェノール酸素や溶媒にトラップされ、トリメチルロックが駆動してdecagingが進行する。このトリメチルロック環化過程がもっとも遅いステップである。しばしば環化前のヒドロキノン体が単離されることからこれは支持される。

【2】中間体構造について

「Ionic pathwayを経由するのか、radicalic pathwayを経るのか」が主たる議論の的になっている。結論としては、ionic pathway経由で、zwitterionを与えるスキーム上部の経路が最もあり得るメカニズムと判断されている。詳しい議論は冒頭論文②を参照されたい。

議論すべき点

  • トリメチルロック部位と光学的に干渉してしまうような光駆動性分子でも、放出対象として使用可能かは気になる。今回の系では波長が被らないクマリンで実証実験を行なっている。
  • 硫黄・アミン部に様々な機能部位(溶解性向上・膜透過性向上・生態分布制御など)を持たせることが可能なのは利点。

未解決問題へのアプローチ

  • 次なる目標は近赤外レベルの長波長駆動だと思われる。組織深部に到達する光には650-1300 nmが必要と言われている(血中ヘム、水、脂質、メラニンいずれにも吸収されない波長帯)[4]。π系拡張によるStokes Shiftはもっとも簡単に行える設計だが、応じて溶解性や生体適合性の低下が問題になりがちである。Si, B, Pの導入などでπ系を伸長させず長波長化を達成する最近の設計トレンドは参考にできるか。

参考文献

  1. Review: Levine, M. N.; Raines, R. T. Chem. Sci. 2012, 3, 2412. doi:10.1039/C2SC20536J
  2. Review for photoremovable PGs: (a) Klán, P.; Šolome, T.; Bochet, C. G.; Blanc, A.; Givens, R.; Rubina, M.; Popik, V.; Kostikov, A.; Wirz, J. Chem. Rev. 2013, 113, 119. DOI: 10.1021/cr300177k (b) Hansen, M. J.; Velema, W. A.; Lerch, M. M.; Szymanski, W.; Feringa, B. L. Chem. Soc. Rev. 2015, 44, 3358.  doi:10.1039/C5CS00118H
  3. 冒頭論文①、ref30-44
  4. Near-infrared window in biological tissue – Wikipedia

 

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 光と励起子が混ざった準粒子 励起子ポラリトン
  2. 安全なジアゾ供与試薬
  3. 大人気の超純水製造装置を組み立ててみた
  4. 電子を閉じ込める箱: 全フッ素化キュバンの合成
  5. 活性酸素を効率よく安定に生成できる分子光触媒 〜ポルフィリンと分…
  6. 研究者版マイナンバー「ORCID」を取得しよう!
  7. 分子間相互作用の協同効果を利用した低対称分子集合体の創出
  8. “Wakati Project” 低コス…

注目情報

ピックアップ記事

  1. 最後に残ったストリゴラクトン
  2. 思わぬ伏兵・豚インフルエンザ
  3. マクドナルドなど9社を提訴、発がん性物質の警告表示求め=カリフォルニア州
  4. オキシ-コープ転位 Oxy-Cope Rearrangement
  5. 東海カーボンと三菱化学、カーボンブラックの共同会社を断念
  6. マテリアルズ・インフォマティクスにおける従来の実験計画法とベイズ最適化の比較
  7. ノーベル医学生理学賞、米の2氏に
  8. 上田 善弘 Yoshihiro Ueda
  9. ブルース・エイムス Bruce N. Ames
  10. 第97回日本化学会春季年会 付設展示会ケムステキャンペーン Part II

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年12月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

\課題に対してマイクロ波を試してみたい方へ/オンライン個別相談会

プロセスの脱炭素化及び効率化のキーテクノロジーである”マイクロ波”について、今回は、適用を検討してみ…

四国化成ってどんな会社?

私たち四国化成ホールディングス株式会社は、企業理念「独創力」を掲げ、「有機合成技術」…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP