[スポンサーリンク]

化学者のつぶやき

可視光照射でトリメチルロックを駆動する

[スポンサーリンク]

カリフォルニア工科大学・Dennis A. Doughertyらは、光照射で脱保護されるアミン or アルコールの保護基「キノントリメチルロック」を開発した。置換基(Y)を変更することで400-600 nmの長波長光で駆動可能。副生物は吸光性を示さない。続報にて詳細な機構解析も報告している。

① “A General Strategy for Visible-Light Decaging Based on the Quinone Trimethyl Lock”
Walton, D. P.; Dougherty, D. A.* J. Am. Chem. Soc. 2017, 139, 4655−4658. DOI: 10.1021/jacs.7b01548
② “Mechanistic Studies of the Photoinduced Quinone Trimethyl Lock Decaging Process”
Regan, C. J.; Walton, D. P.; Shafaat, O. S.; Dougherty, D. A.* J. Am. Chem. Soc. 2017, 139, 4729-4736. DOI: 10.1021/jacs.6b12007

問題設定

トリメチルロック[1]は様々に誘導化可能な保護基として幅広い応用に用いられてきた。しかしながら光化学的にトリメチルロックを駆動する目的にはUVの使用(ニトロベンジル保護体を用いるなど)が前提されていた。長波長光で駆動される分子は、生体組織浸透性などもろもろの文脈から魅力があるが、金属フリーで長波長吸収(>450nm)をもつ保護基はそもそもバリエーションが少ない[2]。

技術や手法の肝

Doughertyらは、光誘起型電子移動を介して、キノン構造をヒドロキノンへと還元し、トリメチルロックを駆動させることを考えた。キノン型トリメチルロックをチオ硫酸ナトリウムなどで還元して熱的に駆動するコンセプトは既知である。またキノンをアミンやスルフィドで光還元できることも既知である[3]。しかしながら両者を組み合わせて可視光駆動型トリメチルロックに仕立てた先例は存在しない。

主張の有効性検証

①化合物の設計と合成

ブロモキノンカルボン酸中間体に対してアミン・スルフィドを合成終盤で付加させて、様々なキノントリメチルロックを合成した。水溶性をあげる目的で、糖をつけておくこともできる。合成されたものはいずれも可視光吸収を持つ。

②光駆動性の実証

スルフィド型は455nm LED照射にて綺麗に切断され、アルコールが定量的に放出される。アミン型はより長波長に吸収を持つため、565nm LEDを使う。こちらは非極性溶媒中でも実施可能。いずれもSまたはN原子に隣接する活性C-Hを切りながら反応が進行する(Norrish Type II反応)ので、ここのBDEが低いものほど反応が速くなる(ベンジル置換 >アルキル置換)。

放出されるXの部分としてアルコールの代わりにアミンも活用可能。クマリン(λex=355 nm)を用いて蛍光モニタリングしたり、GABAを放出させてアフリカツメガエル(Xenopus oocytes)の細胞を駆動させたりもしている。また、スルフィド型が長波長吸収を持たないことを利用し、アミン型だけを長波長光で選択的に駆動させることにも成功している。

③メカニズム解析

スルフィド型キノントリメチルロックを用いて詳細な反応機構解析がなされている。多数の実験事実を元にした綿密な考察が行なわれているが、ここでは詳細は割愛し、結論だけを要約したい。

【1】律速段階について

おおまなか機構はこれまでに再三示しているとおりである。つまり、光誘起電子移動が起きた後にC-H切断が起こり、zwitterionic中間体が生じる。これがフェノール酸素や溶媒にトラップされ、トリメチルロックが駆動してdecagingが進行する。このトリメチルロック環化過程がもっとも遅いステップである。しばしば環化前のヒドロキノン体が単離されることからこれは支持される。

【2】中間体構造について

「Ionic pathwayを経由するのか、radicalic pathwayを経るのか」が主たる議論の的になっている。結論としては、ionic pathway経由で、zwitterionを与えるスキーム上部の経路が最もあり得るメカニズムと判断されている。詳しい議論は冒頭論文②を参照されたい。

議論すべき点

  • トリメチルロック部位と光学的に干渉してしまうような光駆動性分子でも、放出対象として使用可能かは気になる。今回の系では波長が被らないクマリンで実証実験を行なっている。
  • 硫黄・アミン部に様々な機能部位(溶解性向上・膜透過性向上・生態分布制御など)を持たせることが可能なのは利点。

未解決問題へのアプローチ

  • 次なる目標は近赤外レベルの長波長駆動だと思われる。組織深部に到達する光には650-1300 nmが必要と言われている(血中ヘム、水、脂質、メラニンいずれにも吸収されない波長帯)[4]。π系拡張によるStokes Shiftはもっとも簡単に行える設計だが、応じて溶解性や生体適合性の低下が問題になりがちである。Si, B, Pの導入などでπ系を伸長させず長波長化を達成する最近の設計トレンドは参考にできるか。

参考文献

  1. Review: Levine, M. N.; Raines, R. T. Chem. Sci. 2012, 3, 2412. doi:10.1039/C2SC20536J
  2. Review for photoremovable PGs: (a) Klán, P.; Šolome, T.; Bochet, C. G.; Blanc, A.; Givens, R.; Rubina, M.; Popik, V.; Kostikov, A.; Wirz, J. Chem. Rev. 2013, 113, 119. DOI: 10.1021/cr300177k (b) Hansen, M. J.; Velema, W. A.; Lerch, M. M.; Szymanski, W.; Feringa, B. L. Chem. Soc. Rev. 2015, 44, 3358.  doi:10.1039/C5CS00118H
  3. 冒頭論文①、ref30-44
  4. Near-infrared window in biological tissue – Wikipedia

 

cosine

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 化学工業で活躍する有機電解合成
  2. Carl Boschの人生 その9
  3. 植物生合成の謎を解明!?Heteroyohimbine の立体制…
  4. センター試験を解いてみた
  5. 含『鉛』芳香族化合物ジリチオプルンボールの合成に成功!①
  6. 磁石でくっつく新しい分子模型が出資募集中
  7. 化学研究ライフハック:Twitter活用のためのテクニック
  8. 科研費の審査員を経験して

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. N,N,N’,N’-テトラメチルエチレンジアミン:N,N,N’,N’-Tetramethylethylenediamine
  2. 有機反応の立体選択性―その考え方と手法
  3. アンデルセン キラルスルホキシド合成 Andersen Chiral Sulfoxide Synthesis
  4. 第98回―「極限環境における高分子化学」Graeme George教授
  5. Nature Chemistryデビュー間近!
  6. 【速報】2015年ノーベル生理学・医学賞ー医薬品につながる天然物化学研究へ
  7. クレイグ・ホーカー Craig J. Hawker
  8. Happy Mole Day to You !!
  9. 2001年ノーベル化学賞『キラル触媒を用いる不斉水素化および酸化反応の開発』
  10. 大学院講義 有機化学

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

第149回―「ガスの貯蔵・分離・触媒変換に役立つ金属-有機構造体の開発」Banglin Chen教授

第149回の海外化学者インタビューは、バングリン・チェン教授です。テキサス大学サンアントニオ校化学科…

作った分子もペコペコだけど作ったヤツもペコペコした話 –お椀型分子を利用した強誘電体メモリ–

第311回のスポットライトリサーチは、埼玉大学大学院 理工学研究科 基礎化学コー…

【マイクロ波化学(株)環境/化学分野向けウェビナー】 #CO2削減 #リサイクル #液体 #固体 #薄膜 #乾燥 第3のエネルギーがプロセスと製品を変える  マイクロ波適用例とスケールアップ

<内容>本イベントでは、環境/化学分野の事業・開発課題のソリューションとして、マイクロ波をご紹介…

医療用酸素と工業用酸素の違い

 スズキは29日、インドにある3工場の生産を一時停止すると明らかにした。インドでは新型コロナウイルス…

世界初のジアゾフリーキラル銀カルベン発生法の開発と活性化されていないベンゼノイドの脱芳香族化反応への応用

第310回のスポットライトリサーチは、千葉大学大学院医学薬学府 (根本研究室)・伊藤 翼さんにお願い…

キムワイプをつくった会社 ~キンバリー・クラーク社について~

Tshozoです。本件先日掲載されたこちらのArticleの追っかけでネタ色が強いですが書いてみるこ…

Advanced Real‐Time Process Analytics for Multistep Synthesis in Continuous Flow

In multistep continuous flow chemistry, studying c…

三角形ラジカルを使って発光性2次元ハニカムスピン格子構造を組み立てる!

第309回のスポットライトリサーチは、木村舜 博士にお願いしました。金属と有機配位子がネット…

Chem-Station Twitter

PAGE TOP