[スポンサーリンク]

スポットライトリサーチ

金属イオン認識と配位子交換の順序を切替えるホスト分子

[スポンサーリンク]

第243回のスポットライトリサーチは、金沢大学 理工研究域物質化学系(秋根研究室)・酒田陽子 准教授にお願いしました。

酒田先生は超分子化学分野で精力的に活躍されている女性科学者の一人です。本シリーズ二度目の登場(参考:イオンの出入りを制御するキャップ付き分子容器の開発)です。今回の成果は、自然界の酵素認識機構に類似するホスト–ゲスト化学様式の多様性が人工系にも存在することを見いだし、実際にその切替えに成功したという事例になります。J. Am. Chem. Soc.誌 原著論文・プレスリリースに公開されるとともに、Cover Picture(冒頭図)としても取り上げられています。

“Switching of Recognition First and Reaction First Mechanisms in Host–Guest Binding Associated with Chemical Reactions”
Sakata, Y.; Tamiya, M.; Okada, M.; Akine, S. J. Am. Chem. Soc. 2019, 141, 15597-15604. doi:10.1021/jacs.9b06926

研究室を主宰されている秋根茂久 教授から、人物評を下記のとおり頂いています。広い視野をもって新たな見方を提示することが学術研究の真骨頂であると改めて理解させてくれるエピソードです。それでは今回も現場からのコメントをお楽しみ下さい!

酒田さんは、私の研究室が発足して半年後の2014年に助教として着任し、准教授に昇任した現在に至るまで共に研究活動をしています。大学の運動部出身だけのことはあり(?)、厳しさと優しさが両極端に同居するような人物です。締切直前になったときの頭の回転の速さと馬力にはいつも驚かされます。今回の金属錯体ホストに関する論文も、「ゲスト認識と化学反応(配位子置換)が同時に起こる(ように観測される)こと」「Na+の濃度を上げると配位子置換が加速されること」について学会数日前に議論している中で、その実験結果が当初予想していた以上の意義を持つことに気づき、それをまとめた内容です。一見して関連のなさそうな生化学分野の研究に隠されていたヒントに気づけるところに、酒田さんの見識の広さを感じさせられます。

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

本研究では、化学反応とほぼ同時に金属イオンを認識するホスト分子において、「認識」と「反応」のどちらが先に起こるかを切り替えることに成功しました。
クラウンエーテルに代表されるような、特定の分子やイオンを捕まえることのできる超分子ホストがこれまでに多く報告されていますが、これらホスト分子のいくつかはゲストを捕捉する際にゲストに合わせて構造を変化させることが知られています。これは「誘導適合(Induced fit)」と呼ばれている現象であり、酵素が基質を捕まえる際に見られます。近年になって、逆の順番、すなわち酵素が構造変化した後で基質を捕まえる例「配座選択(conformational selection)」があることも明らかになってきました。人工のホスト分子においても、このような「配座選択」の機構で起こっている例があると想像できますが、ゲストの認識と構造変化は非常に短い時間で起こるため区別が難しく、ほとんどすべての例で無条件に「誘導適合」であると見なして議論されてきました。
本研究では、人間のタイムスケールで追跡できる程度にゆっくりと反応が起こるコバルト(III)イオン上の軸配位子交換に着目し、クラウンエーテル様の空孔を持つ金属錯体型環状ホスト分子(図1)を用いて、人工系のホスト・ゲスト系における「誘導適合」と「配座選択」の二つの機構を区別することに成功しました(図2)。特に、ナトリウムイオン(Na+)をゲストとして捕捉する場合は「誘導適合」型でゲスト認識が進行するのに対し、よりイオン半径の大きなカリウムイオン(K+)、ルビジウムイオン(Rb+)を捕捉する場合は「配座選択」型でゲスト認識が起こることを明らかにし、ゲストイオンの種類を変えることで機構を切り替えることにも成功しました(図2)。

図1. 本研究で開発したコバルト(III)イオンを含む金属錯体型環状ホスト分子.

図2. 金属錯体型環状ホスト分子のナトリウムイオン(Na+)取り込み挙動(上)と、カリウムイオン(K+)およびルビジウムイオン(Rb+)の取り込み挙動(下).

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

実のところ、本研究の結果は予想外のものでした。以前に我々は、軸配位子にメチルアミンが導入された類似の構造を持つコバルト環状錯体を合成し、交換可能なアニオン性のキャップを導入できるユニークなホスト分子となることを報告しています(Nat. Commun. 2017, 8, 16005. Chem-Stationにも取り上げていただいています)。この軸配位子を他のアミン類に交換すれば、導入するアニオンキャップの種類や、交換速度などもチューニングできるだろうという非常に安易な考えの下、二級アミンであるピペリジンを軸配位子に導入したコバルト環状ホスト分子の合成に取り組みました。しかし、このホスト分子は以前のメチルアミン型のホスト分子で強く捕捉されたナトリウムイオン(Na+)などのアルカリ金属イオンは全く認識しませんでした。落胆しながら一日後に1H NMRスペクトルを測定すると、全く異なるスペクトルに変化しており、ホスト・ゲスト錯体の結晶構造解析の結果とあわせて、軸配位子交換が起こりながらゲストを取り込んでいるということがわかりました。ゆっくりと配位子交換が起こりながらゲストを捕捉するという系は珍しく、本研究を推進する大きなきっかけとなりました。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

実際に、上記のような経緯でゆっくりと軸配位子交換が起こりながらゲストを認識する系を見つけることができたのですが、当初はこの研究の何が面白いのか正直ピンとは来ていませんでした。学会発表前の切羽詰まった状態で「今回の系は誘導適合だけど、そもそも誘導適合って何が面白いのかな」と何気なく「誘導適合(Induced fit)」というワードで検索してみたところ、「配座選択(conformational selection)」というワードが目に飛び込んできました。そこで初めて、酵素と基質の結合を議論する上で「誘導適合」と「配座選択」を区別することが生化学の分野で近年ホットトピックとなっていること、また「酵素の構造変化の速度」が基質の有無や濃度で変化するかどうかを観測することでそれらの機構を区別できるということを知りました。今回の人工ホストの系でも「酵素の構造変化」と「基質」を「軸配位子交換」と「金属イオン」に置き換えて同じような速度論的な解析をすれば、「配位子交換(反応)」と「ゲスト認識」のどちらが先に起こっているのか(論文中ではそれぞれ「reaction first」と「recognition first」と定義しました)ということが区別できるのではと思い、本研究を本格的に着手しました。ひたすらゲストの種類や濃度を変えて1H NMRスペクトルの時間追跡をし、フィッティングをするということを繰り返す作業はそれなりに大変でしたが、人工ホスト・ゲスト系における新しい視点を築けるに違いないという思いで乗り越えました。結果的に、ゲストを取り込んだ「終状態」でほぼ同じ構造をしていても、ゲストがカリウムイオン(K+)やルビジウムイオン(Rb+)の場合ではナトリウムイオン(Na+)の場合と大きく機構が異なることが分かり、これは速度論的な解析をすることで初めて明らかになった違いであると言えます。

Q4. 将来は化学とどう関わっていきたいですか?

化学の一番の醍醐味は、分子の挙動を予想しそれを試した結果、想像をはるかに超えた面白い結果が得られることであると思っています。特に非共有結合性相互作用を用いた超分子化学はセレンディピティの宝庫です。すべてがセレンディピティ頼みという訳にはいきませんが、これからもこのような予想外の分子のレスポンスを見逃さずに、自分自身が化学や研究を楽しんでいければと思っています。同時に、一人でも多くの人に「え、こんなことできちゃったの?」と驚いたり感動してもらえるような研究ができればいいなと思ったりもしています。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

今回の研究成果は、単に予想外の結果が出たということに留まらず、その結果が意味していること、またその系でしかできないことは何かということを考えて得たものです。これまでに予想外の結果が出たことはありましたが、さらにそこから視点を変えて全く異なるストーリーの成果にするという経験は初めてであり、私自身も大変勉強になりました。みなさんも今手元にある当たり前のように思える成果を、視点を変えて見ることで新しい研究分野や成果が広がるかもしれませんので、是非いろんな角度から見てみてはいかがでしょうか。

最後に、本研究を遂行するにあたり多くの助言をいただいた秋根茂久教授、および実際に一部の実験を遂行してくれた卒業生の多宮宗弘君、岡田征大君に感謝申し上げます。

研究者の略歴

名前:酒田 陽子
所属:金沢大学理工研究域物質化学系 秋根研究室 准教授
専門:超分子化学、錯体化学

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 基礎有機化学討論会開催中
  2. 配位子を着せ替え!?クロースカップリング反応
  3. 【マイクロ波化学(株)医薬分野向けウェビナー】 #ペプチド #核…
  4. 極薄のプラチナナノシート
  5. 『主鎖むき出し』の芳香族ポリマーの合成に成功 ~長年…
  6. 化学者がコンピューター計算を行うべきか?
  7. ハッピー・ハロウィーン・リアクション
  8. 有機合成化学者が不要になる日

注目情報

ピックアップ記事

  1. 社会に出てから大切さに気付いた教授の言葉
  2. マテリアルズ・インフォマティクスの導入・活用・推進におけるよくある失敗とその対策とは?
  3. スイスに留学するならこの奨学金 -Swiss Government Excellence Scholarshipsー
  4. やまと根岸通り
  5. 化学研究ライフハック: 研究現場のGTD式タスク管理
  6. (1-ジアゾ-2-オキソプロピル)ホスホン酸ジメチル:Dimethyl (1-Diazo-2-oxopropyl)phosphonate
  7. 日本学術振興会賞受賞者一覧
  8. ヴァレリー・フォキン Valery V. Fokin
  9. 有機合成化学協会誌2020年4月号:神経活性化合物・高次構造天然物・立体選択的エーテル環構築・二核ルテニウム錯体・多点認識型含窒素複素環カルベン
  10. リガンドによりCO2を選択的に導入する

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年1月
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

最新記事

Pdナノ粒子触媒による1,3-ジエン化合物の酸化的アミノ化反応の開発

第629回のスポットライトリサーチは、関西大学大学院 理工学研究科(触媒有機化学研究室)博士課程後期…

第4回鈴木章賞授賞式&第8回ICReDD国際シンポジウム開催のお知らせ

計算科学,情報科学,実験科学の3分野融合による新たな化学反応開発に興味のある方はぜひご参加ください!…

光と励起子が混ざった準粒子 ”励起子ポラリトン”

励起子とは半導体を励起すると、電子が価電子帯から伝導帯に移動する。価電子帯には電子が抜けた後の欠…

三員環内外に三連続不斉中心を構築 –NHCによる亜鉛エノール化ホモエノラートの精密制御–

第 628 回のスポットライトリサーチは、東北大学大学院薬学研究科 分子薬科学専…

丸岡 啓二 Keiji Maruoka

丸岡啓二 (まるおか けいじ)は日本の有機化学者である。京都大学大学院薬学研究科 特任教授。専門は有…

電子一つで結合!炭素の新たな結合を実現

第627回のスポットライトリサーチは、北海道大有機化学第一研究室(鈴木孝紀教授、石垣侑祐准教授)で行…

柔軟な姿勢が成功を引き寄せた50代技術者の初転職。現職と同等の待遇を維持した確かなサポート

50代での転職に不安を感じる方も多いかもしれません。しかし、長年にわたり築き上げてきた専門性は大きな…

SNS予想で盛り上がれ!2024年ノーベル化学賞は誰の手に?

さてことしもいよいよ、ノーベル賞シーズンが到来します!化学賞は日本時間 2024…

「理研シンポジウム 第三回冷却分子・精密分光シンポジウム」を聴講してみた

bergです。この度は2024年8月30日(金)~31日(土)に電気通信大学とオンラインにて開催され…

【書籍】Pythonで動かして始める量子化学計算

概要PythonとPsi4を用いて量子化学計算の基本を学べる,初学者向けの入門書。(引用:コ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP