[スポンサーリンク]

化学者のつぶやき

Branch選択的不斉アリル位C(Sp3)–Hアルキル化反応

[スポンサーリンク]

1,4ジエンのC3位選択的な不斉アリル位C–Hアルキル化反応が開発された。DFT計算により立体選択性が発現する遷移状態、および、本反応が内圏機構で進行していることが示唆された。

アリル位C–Hアルキル化反応

Pd触媒アリル位C–Hアルキル化反応は、事前の官能基化を必要とせずに迅速な炭素鎖構築を可能とする有用な手法である。アリル位C–Hアルキル化反応は、2008年にWhite、Shiらがそれぞれ初めて報告した[1]。近年では不斉アリル位C–Hアルキル化反応も達成されている(図1A)。2013年Trostらが、配位子にキラルホスホロアミダイト(L1)を用い、アリルアレーンとアセチルα-テトラロンとの不斉アリル位C–Hアルキル化を報告した(図1A(a))[2]。その後、WhiteらはArSOX配位子(L2)を用いる手法を見出した[3]。これらの反応ではlinear体が選択的に得られる。一方で、branch選択的な不斉アリル位C–Hアルキル化も知られる(図1A(b))。

2016年にGongらは、求核剤にピラゾロンを用いると1,4-ジエンのC5位選択的に不斉アリル位C–Hアルキル化反応が進行し、branch体が主生成物として得られることを発見した[4]。その後、同著者らは2–アシルイミダゾールを求核剤とし、アリルエーテルのbranch選択的C–Hアルキル化も開発した[5]
今回同著者であるGongらは2–アシルイミダゾールと、1,4-ジエンもしくはアリルアレーンとのbranch選択的な不斉アリル位C–Hアルキル化反応を見出した(図1B)。DFT計算を用いた反応機構解明研究により、本反応が内圏機構で進行することが示唆されている。

図1A. 従来のC–H不斉アリル位アルキル化反応 図1B.今回の反応

論文著者の紹介


研究者:Liu-Zhu Gong龚流柱
研究者の経歴:
1989-1993 BSc, Henan Normal University, China
1993-1996 MSc, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, China
1996-2000 PhD, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
1998-2000 Visiting Scholar (Joint PhD candidate), The University of Virginia, USA
2000-2001 Associate Professor, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, China
2001-2005 Professor, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, China
2006- Professor, Department of Chemistry and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, China
研究内容:有機触媒による直接アルドール反応、キラルオキソバナジウム錯体による反応、キラルブレンステッド酸触媒による不斉多成分連結反応、金属/有機協働触媒反応

研究者:Pu-Sheng Wang 汪普生
研究者の経歴:
2010 BSc, University of Science and Technology of China, China
2015 PhD, University of Science and Technology, China (Prof. Liu-Zhu Gong)
Present: Associate Professor, Department of Chemistry and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, China (Prof. Liu-Zhu Gong)
研究内容:不明

論文の概要

本手法では種々の構造改変によって見出したキラルホスホロアミダイト配位子L1をもつPd触媒と、炭酸カリウム、酸化剤として2,5-ジメチルベンゾキノン(DMBQ)存在下、2­–アシルイミダゾール1と1,4-ジエンもしくはアリルアレーン2を反応させることで、対応するカップリング体3をエナンチオ選択的に与える(図2A)。芳香環上に種々の置換基をもつアリルアレーン(3a,3b)に加え、高反応性のハロアルカン部位やハロアレーン部位をもつ1,4-ジエン(3c,3d)が適用できた。
生成物3は立体を維持したまま様々なカルボニル化合物に誘導できる(図2B)。例えば3eN-メチル化した後に塩基性条件下アルコールを作用させ、エステル4が得られた。その後、ジアステレオ比の低下が伴うものの、ヒドロホウ素化を経てラクトン5への誘導化にも成功した。
今回、Gongらは本反応の機構を解明すべく、遷移状態のDFT計算を行った(図2C)。その結果、π-アリルパラジウム中間体に対し、アシルイミダゾールの窒素原子が配位するTS5が最も安定な遷移状態であることが分かった。この中間体から内圏機構(inner sphere pathway)でC–C結合形成が進行し、(R,R)体が得られることが予測されるが、この立体選択性は実験結果と一致する。

次に、外圏機構(outer sphere pathway)で反応が進行した際に、(R,R)体の生成過程であると予測される遷移状態TS13と、このTS5のエネルギー障壁をそれぞれ計算した。その結果、TS13へ至るエネルギー障壁はTS5のものよりも高かったことから、著者らは本反応が内圏機構で進行すると結論づけた。

図2A. 基質適用範囲 図2B. 誘導化 図2C. 遷移状態のDFT計算 (一部論文より引用)

 

以上、末端アルケンのC3位選択的C–H不斉アリルアルキル化反応が開発された。DFT計算による遷移状態の解明が、今後の立体化学の制御につながることが期待される。

参考文献

  1. (a) Lin, S.; Song, C.-X.; Cai, G.-X.; Wang, W.-H.; Shi, Z.-J. Intra/Intermolecular Direct Allylic Alkylation via Pd(II)-Catalyzed Allylic C-H Activation. J. Am. Chem. Soc.2008, 130, 12901–12903. DOI: 10.1021/ja803452p(b) Young, A. J.; White, M. C.; Catalytic Intermolecular Allylic C–H Alkylation.J. Am. Chem. Soc.2008, 130, 14090–14091. DOI:10.1021/ja806867p
  2. Thaisrivongs, D. ; Donckele, E. J.; Trost, B. M. Palladium-Catalyzed Enantioselective Allylic Alkylations through C–H Activation. Angew. Chem., Int. Ed. 2013,52, 1523–1526. DOI: 10.1002/anie.201207870
  3. Liu, W.; Ali, S. Z.; Ammann, S. E.; White, M. C. Asymmetric Allylic C−H Alkylation via Palladium(II)/cis-ArSOX Catalysis. J. Am. Chem. Soc.2018, 140, 10658−10662. DOI: 10.1021/jacs.8b05668
  4. Lin, H.-C.; Wang, P.-S.; Tao, Z.-L.; Chen, Y.-G.; Han, Z.-Y.; Gong, L.-Z. Highly Enantioselective Allylic C−H Alkylation of Terminal Olefins with Pyrazol-5-ones Enabled by Cooperative Catalysis of Palladium Complex and Brønsted Acid. J. Am. Chem. Soc.2016,138, 14354–14361. DOI: 10.1021/jacs.6b08236
  5. Wang, T.-C.; Fan, L.-F.; Shen, Y.; Wang, P.-S.; Gong, L.-Z. Asymmetric Allylic C−H Alkylation of Allyl Ethers with 2‐Acylimidazoles J. Am. Chem. Soc.2019,141, 10616−10620. DOI:10.1021/jacs.9b05247
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 第47回天然物化学談話会に行ってきました
  2. 免疫の生化学 (1) 2018年ノーベル医学賞解説
  3. 化学の祭典!国際化学オリンピック ”53rd IChO 2021…
  4. TEtraQuinoline (TEQ)
  5. 研究室でDIY!~エバポ用真空制御装置をつくろう~ ⑤ 最終回
  6. 金属・ガラス・製紙・化学・土石製品業界の脱炭素化 〜合成、焼成、…
  7. 【7/21 23:59〆切】研究費総額100万円!「AI × ◯…
  8. クロスカップリング用Pd触媒 小ネタあれこれ

注目情報

ピックアップ記事

  1. 褐色の要因となる巨大な光合成膜タンパク質複合体の立体構造の解明
  2. 抗リーシュマニア活性を有するセスキテルペンShagene AおよびBの全合成研究
  3. タンニンでさび防ぐ効果 八王子の会社
  4. マクコーマック反応 McCormack Reaction
  5. デルゴシチニブ(Delgocitinib)のはなし 日本発の非ステロイド系消炎外用薬について
  6. 100兆分の1秒を観察 夢の光・XFEL施設公開
  7. 分子の対称性が高いってどういうこと ?【化学者だって数学するっつーの!: 対称操作】
  8. 第一手はこれだ!:古典的反応から最新反応まで2 |第7回「有機合成実験テクニック」(リケラボコラボレーション)
  9. (1-ジアゾ-2-オキソプロピル)ホスホン酸ジメチル:Dimethyl (1-Diazo-2-oxopropyl)phosphonate
  10. 特長のある豊富な設備:ライトケミカル工業

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年12月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

最新記事

月岡温泉で硫黄泉の pH の影響について考えてみた 【化学者が行く温泉巡りの旅】

臭い温泉に入りたい! というわけで、硫黄系温泉を巡る旅の後編です。前回の記事では群馬県草津温泉をご紹…

二酸化マンガンの極小ナノサイズ化で次世代電池や触媒の性能を底上げ!

第649回のスポットライトリサーチは、東北大学大学院環境科学研究科(本間研究室)博士課程後期2年の飯…

日本薬学会第145年会 に参加しよう!

3月27日~29日、福岡国際会議場にて 「日本薬学会第145年会」 が開催されま…

TLC分析がもっと楽に、正確に! ~TLC分析がアナログからデジタルに

薄層クロマトグラフィーは分離手法の一つとして、お金をかけず、安価な方法として現在…

先端の質量分析:GC-MSおよびLC-MSデータ処理における機械学習の応用

キャラクタライゼーションの機械学習応用は、マテリアルズ・インフォマティクス(MI)およびラボオートメ…

原子半径・電気陰性度・中間体の安定性に起因する課題を打破〜担持Niナノ粒子触媒の協奏的触媒作用〜

第648回のスポットライトリサーチは、東京大学大学院工学系研究科(山口研究室)博士課程後期2年の松山…

リビングラジカル重合ガイドブック -材料設計のための反応制御-

概要高機能高分子材料の合成法として必須となったリビングラジカル重合を、ラジカル重合の基礎から、各…

高硬度なのに高速に生分解する超分子バイオプラスチックのはなし

Tshozoです。これまでプラスチックの選別の話やマイクロプラスチックの話、およびナノプラスチッ…

新発想の分子モーター ―分子機械の新たなパラダイム―

第646回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機反応論研究室 助教の …

大人気の超純水製造装置を組み立ててみた

化学・生物系の研究室に欠かせない超純水装置。その中でも最も知名度が高いのは、やはりメルクの Mill…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP