[スポンサーリンク]

化学者のつぶやき

Branch選択的不斉アリル位C(Sp3)–Hアルキル化反応

[スポンサーリンク]

1,4ジエンのC3位選択的な不斉アリル位C–Hアルキル化反応が開発された。DFT計算により立体選択性が発現する遷移状態、および、本反応が内圏機構で進行していることが示唆された。

アリル位C–Hアルキル化反応

Pd触媒アリル位C–Hアルキル化反応は、事前の官能基化を必要とせずに迅速な炭素鎖構築を可能とする有用な手法である。アリル位C–Hアルキル化反応は、2008年にWhite、Shiらがそれぞれ初めて報告した[1]。近年では不斉アリル位C–Hアルキル化反応も達成されている(図1A)。2013年Trostらが、配位子にキラルホスホロアミダイト(L1)を用い、アリルアレーンとアセチルα-テトラロンとの不斉アリル位C–Hアルキル化を報告した(図1A(a))[2]。その後、WhiteらはArSOX配位子(L2)を用いる手法を見出した[3]。これらの反応ではlinear体が選択的に得られる。一方で、branch選択的な不斉アリル位C–Hアルキル化も知られる(図1A(b))。

2016年にGongらは、求核剤にピラゾロンを用いると1,4-ジエンのC5位選択的に不斉アリル位C–Hアルキル化反応が進行し、branch体が主生成物として得られることを発見した[4]。その後、同著者らは2–アシルイミダゾールを求核剤とし、アリルエーテルのbranch選択的C–Hアルキル化も開発した[5]
今回同著者であるGongらは2–アシルイミダゾールと、1,4-ジエンもしくはアリルアレーンとのbranch選択的な不斉アリル位C–Hアルキル化反応を見出した(図1B)。DFT計算を用いた反応機構解明研究により、本反応が内圏機構で進行することが示唆されている。

図1A. 従来のC–H不斉アリル位アルキル化反応 図1B.今回の反応

論文著者の紹介


研究者:Liu-Zhu Gong龚流柱
研究者の経歴:
1989-1993 BSc, Henan Normal University, China
1993-1996 MSc, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, China
1996-2000 PhD, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
1998-2000 Visiting Scholar (Joint PhD candidate), The University of Virginia, USA
2000-2001 Associate Professor, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, China
2001-2005 Professor, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, China
2006- Professor, Department of Chemistry and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, China
研究内容:有機触媒による直接アルドール反応、キラルオキソバナジウム錯体による反応、キラルブレンステッド酸触媒による不斉多成分連結反応、金属/有機協働触媒反応

研究者:Pu-Sheng Wang 汪普生
研究者の経歴:
2010 BSc, University of Science and Technology of China, China
2015 PhD, University of Science and Technology, China (Prof. Liu-Zhu Gong)
Present: Associate Professor, Department of Chemistry and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, China (Prof. Liu-Zhu Gong)
研究内容:不明

論文の概要

本手法では種々の構造改変によって見出したキラルホスホロアミダイト配位子L1をもつPd触媒と、炭酸カリウム、酸化剤として2,5-ジメチルベンゾキノン(DMBQ)存在下、2­–アシルイミダゾール1と1,4-ジエンもしくはアリルアレーン2を反応させることで、対応するカップリング体3をエナンチオ選択的に与える(図2A)。芳香環上に種々の置換基をもつアリルアレーン(3a,3b)に加え、高反応性のハロアルカン部位やハロアレーン部位をもつ1,4-ジエン(3c,3d)が適用できた。
生成物3は立体を維持したまま様々なカルボニル化合物に誘導できる(図2B)。例えば3eN-メチル化した後に塩基性条件下アルコールを作用させ、エステル4が得られた。その後、ジアステレオ比の低下が伴うものの、ヒドロホウ素化を経てラクトン5への誘導化にも成功した。
今回、Gongらは本反応の機構を解明すべく、遷移状態のDFT計算を行った(図2C)。その結果、π-アリルパラジウム中間体に対し、アシルイミダゾールの窒素原子が配位するTS5が最も安定な遷移状態であることが分かった。この中間体から内圏機構(inner sphere pathway)でC–C結合形成が進行し、(R,R)体が得られることが予測されるが、この立体選択性は実験結果と一致する。

次に、外圏機構(outer sphere pathway)で反応が進行した際に、(R,R)体の生成過程であると予測される遷移状態TS13と、このTS5のエネルギー障壁をそれぞれ計算した。その結果、TS13へ至るエネルギー障壁はTS5のものよりも高かったことから、著者らは本反応が内圏機構で進行すると結論づけた。

図2A. 基質適用範囲 図2B. 誘導化 図2C. 遷移状態のDFT計算 (一部論文より引用)

 

以上、末端アルケンのC3位選択的C–H不斉アリルアルキル化反応が開発された。DFT計算による遷移状態の解明が、今後の立体化学の制御につながることが期待される。

参考文献

  1. (a) Lin, S.; Song, C.-X.; Cai, G.-X.; Wang, W.-H.; Shi, Z.-J. Intra/Intermolecular Direct Allylic Alkylation via Pd(II)-Catalyzed Allylic C-H Activation. J. Am. Chem. Soc.2008, 130, 12901–12903. DOI: 10.1021/ja803452p(b) Young, A. J.; White, M. C.; Catalytic Intermolecular Allylic C–H Alkylation.J. Am. Chem. Soc.2008, 130, 14090–14091. DOI:10.1021/ja806867p
  2. Thaisrivongs, D. ; Donckele, E. J.; Trost, B. M. Palladium-Catalyzed Enantioselective Allylic Alkylations through C–H Activation. Angew. Chem., Int. Ed. 2013,52, 1523–1526. DOI: 10.1002/anie.201207870
  3. Liu, W.; Ali, S. Z.; Ammann, S. E.; White, M. C. Asymmetric Allylic C−H Alkylation via Palladium(II)/cis-ArSOX Catalysis. J. Am. Chem. Soc.2018, 140, 10658−10662. DOI: 10.1021/jacs.8b05668
  4. Lin, H.-C.; Wang, P.-S.; Tao, Z.-L.; Chen, Y.-G.; Han, Z.-Y.; Gong, L.-Z. Highly Enantioselective Allylic C−H Alkylation of Terminal Olefins with Pyrazol-5-ones Enabled by Cooperative Catalysis of Palladium Complex and Brønsted Acid. J. Am. Chem. Soc.2016,138, 14354–14361. DOI: 10.1021/jacs.6b08236
  5. Wang, T.-C.; Fan, L.-F.; Shen, Y.; Wang, P.-S.; Gong, L.-Z. Asymmetric Allylic C−H Alkylation of Allyl Ethers with 2‐Acylimidazoles J. Am. Chem. Soc.2019,141, 10616−10620. DOI:10.1021/jacs.9b05247
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 有機合成化学総合講演会@静岡県立大
  2. タミフルの新規合成法・その3
  3. 第三回ケムステVシンポ「若手化学者、海外経験を語る」開催報告
  4. マンガン触媒による飽和炭化水素の直接アジド化
  5. 光触媒水分解材料の水分解反応の活性・不活性点を可視化する新たな分…
  6. 最終面接で内定をもらう人の共通点について考えてみた
  7. エステルをアルデヒドに変換する新手法
  8. π拡張ジベンゾ[a,f]ペンタレン類の合成と物性

注目情報

ピックアップ記事

  1. マテリアルズ・インフォマティクス新春座談会 -二刀流で進める素材開発 実験と計算科学-
  2. 希少金属
  3. 最少の実験回数で高い予測精度を与える汎用的AI技術を開発 ~材料開発のDX:NIMS、旭化成、三菱ケミカル、三井化学、住友化学の水平連携で実現~
  4. マクマリーカップリング McMurry Coupling
  5. 化学者だって数学するっつーの! :定常状態と変数分離
  6. 構造式の効果
  7. 齊藤 尚平 Shohei Saito
  8. ちょっとした悩み
  9. 始めよう!3Dプリンターを使った実験器具DIY:3D CADを使った設計編その2
  10. アレクサンダー・リッチ Alexander Rich

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年12月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP