[スポンサーリンク]

スポットライトリサーチ

DNAナノ構造体が誘起・制御する液-液相分離

[スポンサーリンク]

第274回のスポットライトリサーチは、佐藤佑介 博士にお願いしました。

液-液相分離は近年の一大トピックとなっている細胞内化学現象の一つであり、様々な生命現象およびその制御機構の足場になると考えられています。佐藤さんは東京工業大学情報理工学院 瀧ノ上研究室に所属し、この現象にDNA分子を用いてアプローチしました。その結果、人工的に設計したDNAナノ構造体がこの液-液相分離を誘起できること、塩基配列によってそれを制御できることを見いだしました。新たな生命化学ツールとしての活用が期待でき、生命機構を模倣する分子ロボティクス分野への道も拓く成果です。この研究成果はScience Advances誌 原著論文・プレスリリースに公開されています。

“Sequence-based engineering of dynamic functions of micrometer-sized DNA droplets”
Sato, Y.; Sakamoto, T.; Takinoue, M. Sci. Adv. 2020, 6, eaba3471. DOI: 10.1126/sciadv.aba3471

佐藤さんは学生時代にもスポットライトリサーチにご登場いただいていますが、この3月より東北大学 学際フロンティア研究所・助教に着任し、新たなアカデミックキャリアをスタートされています。環境が変わっても常に画期的な成果を上げ続ける新進気鋭の若手科学者のインタビューをご覧下さい!

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

合成DNAで作られたナノ構造(DNAナノ構造)が水中で液-液相分離(LLPS)することで液滴(DNA液滴)を形成することを報告しました.この形成された液滴を,DNAの塩基配列の設計で制御したというのが本研究です.最近,生物分野で生体分子のLLPSが注目を集めています.LLPSという現象自体は以前から知られている現象ですが,細胞内でも生じていること,そして様々な細胞機能の制御を担っていることから,近年多くの研究がなされています.DNAなどの生体高分子は,モノマーの並び順(塩基配列やアミノ酸配列)が分子の振る舞いを特徴づけます.この研究では, DNAナノ構造間の相互作用を配列設計により調節することで,LLPSにより液滴を形成する温度や,融合・分裂・複雑形状の形成・タンパク質の補足といった液滴の動的な挙動を,制御できることを報告しました.

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

DNA液滴の融合や分裂を制御する実験で,複数のDNAナノ構造を設計したのですが,各DNAナノ構造の塩基配列において,直交性を保ちつつハイブリダイゼーションの熱力学的パラメータが同等になるように設計した点は工夫したところです.また,DNAの塩基配列という分子レベルの「情報」が,LLPSというマクロな現象を支配している点は,この研究の内容の中でも特に面白いと思っている点です.DNAは比較的安価に入手でき配列設計も容易なため,将来的に様々な応用が期待できる拡張性の高い成果だと考えています.

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

地味な点ですが,安定して現象を観察できる系を確立するのが難しかったところです.観察チャンバーのデザインや表面処理など,多くのトライアンドエラーを繰り返しました. また,DNA液滴を4種類の蛍光分子で標識して観察する実験を行ったのですが,時時刻々と様態が変化するなかで,いかに素早く撮像のためのパラメータを調節して綺麗な画像を撮るか,という点も難しかったです.

Q4. 将来は化学とどう関わっていきたいですか?

化学のラボの出身ではなかったこともあり,これまでは欲しい分子は(手に入る場合は)外注で入手することがほとんどでした.しかし,米国で化学出身の先生のもとへ留学したことで,欲しい特性を持った分子を自分で用意するという研究の魅力を知ることができました.自分で勉強したり合成を専門とする化学者の方に教えていただいたりしながら,欲しい分子は自分で作る,という研究アプローチも少しずつ取り入れていきたいと考えています.

Q5. 最後に、読者の皆さんにメッセージをお願いします。

私はこれまで,化学,生物学,物理学,工学など様々な分野に少しずつオーバーラップするような研究を行ってきました.学問の細分化による深化が進んできた今の時代には,私のように多くの分野に関わる研究を行っている若い研究者の方も多いと思います.固定観念に捉われず「フィロソフィア」の精神で,世界を開拓していきたいです.

研究者の略歴

名前:佐藤 佑介
所属:東北大学 学際科学フロンティア研究所 新領域創成研究部 助教
経歴:
2015年3 東北大学大学院工学研究科 修士課程 修了(佐藤岳彦 教授)
2016年4月-2018年3月 日本学術振興会特別研究員(DC2)
2018年3月 東北大学大学院工学研究科 博士課程 修了(野村慎一郎 准教授)
2018年3月 博士(工学)
2018年4月-2020年2月 日本学術振興会特別研究員(SPD)(東京工業大学 情報理工学院 瀧ノ上正浩 准教授)
2019年8月-2019年12月 Visiting Scholar, Department of Physics, Kent State University (Thorsten. L. Schmidt, Assistant Professor)
2020年3月より現職

研究テーマ:DNAナノテクノロジーを基盤とした細胞機能の模倣とロボティクスへの展開

ケムステ関連記事

cosine

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. アメリカで Ph. D. を取る –希望研究室にメールを送るの巻…
  2. 冬虫夏草由来の画期的新薬がこん平さんを救う?ーFTY720
  3. 近況報告Part III
  4. 2010年ノーベル化学賞予想―海外版
  5. 光照射によって結晶と液体を行き来する蓄熱分子
  6. ゲームを研究に応用? タンパク質の構造計算ゲーム「Foldit」…
  7. エステルからエーテルをつくる脱一酸化炭素金属触媒
  8. 化学研究で役に立つデータ解析入門:回帰分析の応用編

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 可視光増感型電子移動機構に基づく強還元触媒系の構築
  2. ノーベル化学賞への道公開
  3. アルツハイマー病・ワクチン開発相次ぐ、副作用回避へ知恵絞る
  4. ルーシェ還元 Luche Reduction
  5. アメリカで Ph. D. を取る –研究室に訪問するの巻–
  6. 「日本化学連合」が発足、化学系学協会18団体加盟
  7. ククルビットウリルのロタキサン形成でClick反応を加速する
  8. 創薬人育成サマースクール2019(関東地区) ~くすりを創る研究の醍醐味を知る!~
  9. カルボン酸だけを触媒的にエノラート化する
  10. 大鵬薬品、米社から日本での抗癌剤「アブラキサン」の開発・販売権を取得

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

吉岡里帆さん演じる「化学大好きDIC岡里帆(ディーアイシーおか・りほ)」シリーズ、第2弾公開!

印刷インキや有機顔料世界トップシェアのDIC株式会社は、2021年1月より、数々のヒット作に出演し、…

第14回ケムステVシンポ「スーパー超分子ワールド」を開催します!

ケムステーションをご覧の方々、あけましておめでとうございます。本年もどうぞよろしくお願い申し上げます…

【日産化学】新卒採用情報(2022卒)

―ぶれずに価値創造。私たちは、生み出し続ける新たな価値で、ライフサイエンス・情報通信・環境エ…

高分子鎖デザインがもたらすポリマーサイエンスの再創造|オンライン R2

詳細・お申込みはこちら日時令和3年 2月18日、25日(木) 基礎編        …

化学者のためのエレクトロニクス講座~電解で起こる現象編~

化学者のためのエレクトロニクス講座では半導体やその配線技術、フォトレジストやOLEDなど、エレクトロ…

機械学習により超合金粉末の製造コスト削減に成功

NIMSは、機械学習を適用することで、航空機エンジン用材料として有望なNi-Co基超合金の高性能・高…

実験白衣を10種類試してみた

化学実験関連商品紹介動画シリーズ第二弾です。前回は実験メガネを紹介しました。今回は実験メガネ…

健康的なPC作業環境のすすめ

快適なPC作業環境をサポートするツールと言えば、マルチディスプレイやノイズキャンセリングヘッドホン、…

Chem-Station Twitter

PAGE TOP