[スポンサーリンク]

スポットライトリサーチ

DNAナノ構造体が誘起・制御する液-液相分離

[スポンサーリンク]

第274回のスポットライトリサーチは、佐藤佑介 博士にお願いしました。

液-液相分離は近年の一大トピックとなっている細胞内化学現象の一つであり、様々な生命現象およびその制御機構の足場になると考えられています。佐藤さんは東京工業大学情報理工学院 瀧ノ上研究室に所属し、この現象にDNA分子を用いてアプローチしました。その結果、人工的に設計したDNAナノ構造体がこの液-液相分離を誘起できること、塩基配列によってそれを制御できることを見いだしました。新たな生命化学ツールとしての活用が期待でき、生命機構を模倣する分子ロボティクス分野への道も拓く成果です。この研究成果はScience Advances誌 原著論文・プレスリリースに公開されています。

“Sequence-based engineering of dynamic functions of micrometer-sized DNA droplets”
Sato, Y.; Sakamoto, T.; Takinoue, M. Sci. Adv. 2020, 6, eaba3471. DOI: 10.1126/sciadv.aba3471

佐藤さんは学生時代にもスポットライトリサーチにご登場いただいていますが、この3月より東北大学 学際フロンティア研究所・助教に着任し、新たなアカデミックキャリアをスタートされています。環境が変わっても常に画期的な成果を上げ続ける新進気鋭の若手科学者のインタビューをご覧下さい!

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

合成DNAで作られたナノ構造(DNAナノ構造)が水中で液-液相分離(LLPS)することで液滴(DNA液滴)を形成することを報告しました.この形成された液滴を,DNAの塩基配列の設計で制御したというのが本研究です.最近,生物分野で生体分子のLLPSが注目を集めています.LLPSという現象自体は以前から知られている現象ですが,細胞内でも生じていること,そして様々な細胞機能の制御を担っていることから,近年多くの研究がなされています.DNAなどの生体高分子は,モノマーの並び順(塩基配列やアミノ酸配列)が分子の振る舞いを特徴づけます.この研究では, DNAナノ構造間の相互作用を配列設計により調節することで,LLPSにより液滴を形成する温度や,融合・分裂・複雑形状の形成・タンパク質の補足といった液滴の動的な挙動を,制御できることを報告しました.

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

DNA液滴の融合や分裂を制御する実験で,複数のDNAナノ構造を設計したのですが,各DNAナノ構造の塩基配列において,直交性を保ちつつハイブリダイゼーションの熱力学的パラメータが同等になるように設計した点は工夫したところです.また,DNAの塩基配列という分子レベルの「情報」が,LLPSというマクロな現象を支配している点は,この研究の内容の中でも特に面白いと思っている点です.DNAは比較的安価に入手でき配列設計も容易なため,将来的に様々な応用が期待できる拡張性の高い成果だと考えています.

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

地味な点ですが,安定して現象を観察できる系を確立するのが難しかったところです.観察チャンバーのデザインや表面処理など,多くのトライアンドエラーを繰り返しました. また,DNA液滴を4種類の蛍光分子で標識して観察する実験を行ったのですが,時時刻々と様態が変化するなかで,いかに素早く撮像のためのパラメータを調節して綺麗な画像を撮るか,という点も難しかったです.

Q4. 将来は化学とどう関わっていきたいですか?

化学のラボの出身ではなかったこともあり,これまでは欲しい分子は(手に入る場合は)外注で入手することがほとんどでした.しかし,米国で化学出身の先生のもとへ留学したことで,欲しい特性を持った分子を自分で用意するという研究の魅力を知ることができました.自分で勉強したり合成を専門とする化学者の方に教えていただいたりしながら,欲しい分子は自分で作る,という研究アプローチも少しずつ取り入れていきたいと考えています.

Q5. 最後に、読者の皆さんにメッセージをお願いします。

私はこれまで,化学,生物学,物理学,工学など様々な分野に少しずつオーバーラップするような研究を行ってきました.学問の細分化による深化が進んできた今の時代には,私のように多くの分野に関わる研究を行っている若い研究者の方も多いと思います.固定観念に捉われず「フィロソフィア」の精神で,世界を開拓していきたいです.

研究者の略歴

名前:佐藤 佑介
所属:東北大学 学際科学フロンティア研究所 新領域創成研究部 助教
経歴:
2015年3 東北大学大学院工学研究科 修士課程 修了(佐藤岳彦 教授)
2016年4月-2018年3月 日本学術振興会特別研究員(DC2)
2018年3月 東北大学大学院工学研究科 博士課程 修了(野村慎一郎 准教授)
2018年3月 博士(工学)
2018年4月-2020年2月 日本学術振興会特別研究員(SPD)(東京工業大学 情報理工学院 瀧ノ上正浩 准教授)
2019年8月-2019年12月 Visiting Scholar, Department of Physics, Kent State University (Thorsten. L. Schmidt, Assistant Professor)
2020年3月より現職

研究テーマ:DNAナノテクノロジーを基盤とした細胞機能の模倣とロボティクスへの展開

ケムステ関連記事

cosine

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 「低分子医薬品とタンパク質の相互作用の研究」Harvard大学 …
  2. 第2回慶應有機合成化学若手シンポジウム
  3. 無保護アミン類の直接的合成
  4. スタチンのふるさとを訪ねて
  5. 表面処理技術ーChemical Times特集より
  6. 論文チェックと文献管理にお困りの方へ:私が実際に行っている方法を…
  7. マイクロプラスチックの諸問題
  8. 徒然なるままにセンター試験を解いてみた(2018年版)

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 低投資で効率的な英語学習~有用な教材は身近にある!
  2. 「鍛えて成長する材料」:力で共有結合を切断するとどうなる?そしてどう使う?
  3. プレヴォスト/ウッドワード ジヒドロキシル化反応 Prevost/Woodward Dihydroxylation
  4. 劣性遺伝子押さえ込む メンデルの法則仕組み解明
  5. ゼロから学ぶ機械学習【化学徒の機械学習】
  6. ブルック転位 Brook Rearrangement
  7. 陰山 洋 Hiroshi Kageyama
  8. マグネシウム Magnesium-にがりの成分から軽量化合物材料まで
  9. 第99回日本化学会年会 付設展示会ケムステキャンペーン Part I
  10. 研究者目線からの論文読解を促す抄録フォーマット

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

アカデミックから民間企業へ転職について考えてみる 第三回

カデミックから民間企業へ転職した場合、入社後にギャップを感じる人が少なからずいます。もちろん、どんな…

第142回―「『理想の有機合成』を目指した反応開発と合成研究」山口潤一郎 教授

第142回の化学者インタビューは日本から、皆さんご存じ、山口潤一郎教授の登場です。名古屋大学理学部化…

【書籍】ゼロからの最速理解 プラスチック材料化学

今月発売された『ゼロからの最速理解 プラスチック材料化学』(佐々木 健夫 著,コロナ社)という書籍を…

重水は甘い!?

同位体はある元素、すなわち同一の原子番号をもつ原子核において、中性子数の異なる核種のことをいいますね…

人物でよみとく化学

概要化学の歴史をつくった約50人を収録。高校・大学の化学の勉強に役立つ16テーマをあつかい、…

金属ナトリウム分散体(SD Super Fine ™)

概要金属ナトリウム分散体(SD Super Fine ™)は、金属ナトリウムの微粒…

アクセラレーションプログラム 「BRAVE 2021 Spring」 参加チームのエントリー受付中!(5/10〆切)

Beyond Next Ventures株式会社(本社:東京都中央区、代表取締役社⻑:伊藤毅、以下「…

赤キャベツから新しい青色天然着色料を発見 -青色1号に代わる美しく安定なアントシアニン色素-

青の食品着色料として広く使われる化学合成の「青色1号」とほぼ同じ色で、長期保存時の安定性に優れた天然…

Chem-Station Twitter

PAGE TOP