[スポンサーリンク]

スポットライトリサーチ

ゲルのやわらかさの秘密:「負のエネルギー弾性」を発見

[スポンサーリンク]

第313回のスポットライトリサーチは、東京大学大学院工学系研究科バイオエンジニアリング専攻 鄭・酒井研究室 博士課程3年 吉川 祐紀さんにお願いしました。この研究では、ゲルのやわらかさを決める物理法則は何か?という非常に基本的な問題について、その鍵となる「負のエネルギー弾性」を世界で初めて発見しました。本研究成果はPhysical Review X誌およびプレスリリースに公開されています。

“Negative Energy Elasticity in a Rubberlike Gel”
Yuki Yoshikawa, Naoyuki Sakumichi, Ung-il Chung, and Takamasa Sakai
Phys. Rev. X, 2021, 11, 011045,  doi:10.1103/PhysRevX.11.011045

研究室を主宰されている酒井 崇匡 教授から、吉川さんについて以下のコメントを頂いています。それでは今回もインタビューをお楽しみください!

ゲルの常識を覆すようなこの大仕事を、形にしてくれた吉川くんには非常に感謝しています。なぜならば、私がこの論文の端緒となるデータを取得したのは、今を遡る10年以上前で、ずっと眠っていたテーマだったからです。当時は、ゲル・測定方法・物理に対する理解が浅く、この大物を釣り上げることができませんでした。吉川くんは、持ち前の探究心で、誰もが納得するようなデータを積み上げ、そして物理学者の作道先生の薫陶を受けながら、美しい物理に昇華させてくれました。この研究を通して、吉川くんは圧倒的に成長したと思います。この先も、持ち前の探究心・考え抜く力をもって、新しい物理を見つけてもらえたらなと思います。期待してますよ!

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

高分子ゲル(以下、単にゲルと呼ぶ)は、ゼリー・豆腐などの食品や、ソフトコンタクトレンズ・止血剤など医療に活用される、ウェットでやわらかい物質です。また、ゲルから水を蒸発させたものがゴムです。ゲルやゴムのやわらかさ (科学的には剛性率と呼ぶ) は熱力学第二法則(エントロピー増大の法則)に基づくエントロピー弾性でおおむね説明できるということが、100年近く常識として信じられてきました。
本研究では、この長年の常識がゲルについては間違いであり、「負のエネルギー弾性」が存在することを発見しました (図)。実験方法としては、様々な高分子網目構造を持つゲルを作製し、そのやわらかさの温度変化の測定と解析を行いました。その結果、ゲルを変形すると、元の形に戻る力であるエントロピー弾性が生じますが、同時にそれと反対向きの力である負のエネルギー弾性が生じて、これらの合計でゲルのやわらかさが決まることが判明しました。この負のエネルギー弾性により、ゲルは大幅にやわらかくなっており、やわらかさの温度変化もこれまでの想定より数倍大きいことがわかりました。本研究の成果は、食用や医療用の新規ゲル材料の開発や、ゲルが利用される産業全般に広い波及効果が期待されます。

図. ゴムとゲルにおける、剛性率の温度依存性の概略図。ゴムはほぼエントロピー弾性のみであり、その剛性率は温度に正比例するが、ゲルは負のエネルギー弾性 (縦軸切片) を持つために、その剛性率は温度に正比例しない。

Q2. 「負のエネルギー弾性」と聞くと、少し(かなり)難しそうだな、一体どのような状態なんだろう?と思ってしまいます。何か例をあげて説明してもらえると嬉しいです。

熱力学的に弾性は、変形時のエントロピー変化から生じるエントロピー弾性と、変形時の内部エネルギー変化から生じるエネルギー弾性の2つから成ります。したがって、「負のエネルギー弾性」は、変形時に内部エネルギーが減少することによって生じます。これは、内部エネルギーだけに着目すれば、変形状態の方が安定的であり、自然と崩壊する方向に進むことを意味します。ただ、ゲルにはそれよりも大きな正のエントロピー弾性が存在するために、それらの合計値は正となり、ゲルは崩壊しません。しかしながら、負のエネルギー弾性によって、ゲルはやわらかく (変形しやすく) なっています。
本研究によって、この負のエネルギー弾性はゲルの溶媒 (水) が原因であることは分かっていますが、具体的なメカニズムについては現在研究中です。

 

Q3. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

長年の常識を疑った解析を行ったことが、一番工夫したところです。ゲルの弾性は、エントロピー弾性のみを考慮したゴム弾性論を用いて、議論されてきました。私も研究当初は、ゴム弾性論を用いたゲル弾性の研究を行っていたのですが、その中で、ゴム弾性論に基づいた解析では、辻褄が合わない実験結果があることに気付きました。そこで、先生方と相談しながら、ゴム弾性論よりもさらに歴史が古く、19世紀までに完成した「平衡熱力学」に立ち戻って、実験・解析を行いました。その結果、ゲルには負のエネルギー弾性が存在し、ゴム弾性とは本質的に異なることを示しました。この研究は、私が学部4年から博士課程2年までの5年間を費やして、ようやく発表できたものなので、全てに思い入れがあります。

 

Q4. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

負のエネルギー弾性が存在することを納得させるような結果を示すことに一番苦心しました。本研究では、50種類以上もの様々な網目構造を持つゲルを作製し、その全てにおいて無視できないほど大きな負のエネルギー弾性が存在することを確認しました。また、負のエネルギー弾性の支配法則を明らかにし、それが先行研究と整合的であることを示すことで、結果により信憑性を持たせることができました。例えば、ゲルの溶媒の割合を減らしてゴムに近づけると、負のエネルギー弾性の寄与が小さくなり、エントロピー弾性が支配的になるという結果が得られたのですが、これはゴム弾性はエントロピー弾性であるとする先行研究と整合的です。

 

Q5. 将来は化学とどう関わっていきたいですか?

物理的知見を用いた設計指針を元に、新たな化学製品を開発したいです。化学は、色々な分子設計をデザインできることが魅力のひとつだと思いますが、その設計指針には物理的アプローチによって得られた知識が、大いに役立つと考えています。例えば、今回発見したゲルの負のエネルギー弾性について、そのメカニズムが明らかになれば、非常に硬いゲルや、逆にものすごくやわらかいゲルをどのように作製すれば良いのかが見えてくると思います。

 

Q6. 最後に、読者の皆さんにメッセージをお願いします。

子供のころ、世の中には「なぜ?」「どうして?」と思うことがたくさんありました。しかし、大人になるにつれ、「これはこう言われているからこういうものなんだ」と理解したような気になり、子供のころのように疑問に思うことが少なくなりました。しかし、今回の研究を通じて、常識だと思われていても、実はその原理・メカニズムが科学的に立証されていないことが、ゲルのような身近なものでも、まだまだあるということを学びました。常識や慣習に囚われず、子供のような純粋な視点を持って研究をすることは大切だと思います。
最後に、本研究が発表されるまでの長期間、暖かくご指導いただきました酒井先生、鄭先生、物理学者の視点から様々なアドバイスをしてくださった作道先生、支えてくださった研究室の皆さんに深く感謝申し上げます。そして今回、研究を紹介する貴重な機会を下さいましたChem-Stationスタッフの皆様に深く御礼申し上げます。

研究者の略歴

名前:吉川 祐紀
所属:東京大学大学院工学系研究科バイオエンジニアリング専攻 鄭・酒井研究室 博士課程3年
研究テーマ:ゴム状高分子ゲルにおける負のエネルギー弾性の系統的理解

略歴: 2017年3月 東京大学工学部マテリアル工学科 卒業
2019年3月 東京大学大学院工学系研究科バイオエンジニアリング専攻 博士前期課程 修了
2019年4月-現在 東京大学大学院工学系研究科バイオエンジニアリング専攻 博士後期課程
2021年4月-現在 日本学術振興会特別研究員(DC2)

 

リンク

東京大学大学院工学系研究科バイオエンジニアリング専攻 酒井・鄭研究室

Avatar photo

Kosuge

投稿者の記事一覧

高分子、超分子、材料化学専門の大学講師です。

関連記事

  1. 最近の有機化学注目論文3
  2. ヒスチジン近傍選択的なタンパク質主鎖修飾法
  3. こんな装置見たことない!化学エンジニアリングの発明品
  4. 二窒素の配位モードと反応性の関係を調べる: Nature Rev…
  5. Dead Endを回避せよ!「全合成・極限からの一手」⑥
  6. 分子標的の化学1「2012年ノーベル化学賞GPCRを導いた親和ク…
  7. 金属を超えるダイヤモンド ーボロンドープダイヤモンドー
  8. NMR化学シフト予測機能も!化学徒の便利モバイルアプリ

注目情報

ピックアップ記事

  1. 研究室での英語【Part 2】
  2. 【PR】Chem-Stationで記事を書いてみませんか?【スタッフ・寄稿募集】
  3. 続・名刺を作ろう―ブロガー向け格安サービス活用のススメ
  4. 昆虫細胞はなぜ室温で接着するのだろう?
  5. 【追悼企画】世のためになる有機合成化学ー松井正直教授
  6. 【マイクロ波化学(株)医薬分野向けウェビナー】 #ペプチド #核酸 #有機合成 #凍結乾燥 第3のエネルギーがプロセスと製品を変える  マイクロ波適用例とスケールアップ
  7. 美麗な元素のおもちゃ箱を貴方に―『世界で一番美しい元素図鑑』
  8. 元素手帳 2018
  9. MOF-5: MOF の火付け役であり MOF の代名詞
  10. むずかしいことば?

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年5月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

最新記事

解毒薬のはなし その1 イントロダクション

Tshozoです。最近、配偶者に対し市販されている自動車用化学品を長期に飲ませて半死半生の目に合…

ビル・モランディ Bill Morandi

ビル・モランディ (Bill Morandi、1983年XX月XX日–)はスイスの有機化学者である。…

《マイナビ主催》第2弾!研究者向け研究シーズの事業化を学べるプログラムの応募を受付中 ★交通費・宿泊費補助あり

2025年10月にマイナビ主催で、研究シーズの事業化を学べるプログラムを開催いたします!将来…

化粧品用マイクロプラスチックビーズ代替素材の市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、化粧品…

分子の形がもたらす”柔軟性”を利用した分子配列制御

第666回のスポットライトリサーチは、東北大学多元物質科学研究所(芥川研究室)笠原遥太郎 助教にお願…

柔粘性結晶相の特異な分子運動が、多段階の電気応答を実現する!

第665回のスポットライトリサーチは、東北大学大学院工学研究科(芥川研究室)修士2年の小野寺 希望 …

マーク・レビン Mark D. Levin

マーク D. レビン (Mark D. Levin、–年10月14日)は米国の有機化学者である。米国…

もう一歩先へ進みたい人の化学でつかえる線形代数

概要化学分野の諸問題に潜む線形代数の要素を,化学専攻の目線から解体・解説する。(引用:コロナ…

ノーベル賞受賞者と語り合う5日間!「第17回HOPEミーティング」参加者募集!

今年もHOPEミーティングの参加者募集の時期がやって来ました。HOPEミーティングは、博士課…

熱前駆体法を利用した水素結合性有機薄膜の作製とトランジスタへの応用

第664回のスポットライトリサーチは、京都大学大学院理学研究科(化学研究所・山田研究室)博士後期課程…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP