[スポンサーリンク]

一般的な話題

【解ければ化学者】ビタミン C はどれ?

[スポンサーリンク]

突然ですが、問題です!

第一問

 抗酸化作用を持ち、老化防止に効果があると言われているビタミンCの構造はどれ?

第二問

砂糖の主成分であるスクロースの構造はどれ?

 

 

さっそく正解と解説に移っても良いのですが、問題のすぐ下に答えを乗せてしまうと間違って答えを見てしまう恐れがあるので、少し間を挟みます。なお、ジグザクした化学構造式の見方について、本記事の最後で解説しておりますので、この記事を読んで「分子の構造を眺めてみるのは面白いな」と思った方は、ぜひ最後の解説を読んでいただけると、理解が深まるかと思います。構造式の見方の要点だけを説明すると、ジグザグ表記の中では折れ曲がった部分や先端の部分が炭素原子 C が存在し、炭素に結合した水素原子は描かれていません。

 

 

 

では、正解発表です。

第一問

 抗酸化作用を持ち、老化防止に効果があると言われているビタミンCの構造はどれ?

正解は、構造の中に OH という部分構造を多く含む 1 でした。料理番組で、「ブロッコリーなどを茹でて調理すると、ビタミン C が失われる」といった説明を聞いたことはありませんか? この事実が、この問題を解くための鍵です。つまりビタミン C は水溶性ビタミンなのです。選択肢の中から水に溶けやすそうな選択肢を選べば正解になりました。

ではどのように水に溶けやすい分子を見分ければよいのでしょうか。実はとっても簡単です。構造の中に OH 基を多く含む分子は、水に溶けやすいのです。その理由をざっくりとかみ砕いて説明すると、水の化学式が H2O であり、OH を多く持つ分子を仲間と認識するからです。

逆に、炭素や水素だけで構成されているような分子は水に溶けにくく、その代わりに油に溶けます。たとえば、他の選択肢である 2 および 3 はビタミン A とビタミン E ですが、どちらも脂溶性ビタミンに分類されています。なぜなら、OH のような水に溶ける部分構造をほとんど持たないからです。

第二問

砂糖の主成分であるスクロースの構造はどれ?

第1問で水に溶ける分子を見分けれらるようになった賢明な読者のみなさんには、この問題の解説は不要ですね。砂糖は水に溶けるので、構造の中に OH 基を含む 2 が正解でした。ちなみに 1 は柑橘類に含まれ、レモンの匂いの成分であるリモネンで、3 はオリーブ油の主成分であるオレイン酸でした。どちらも主に炭素と水素から構成されており、水に溶けにくいです。

終わりに: 分子の構造を知るのは面白い

というわけで、身の回りの化学物質の分子の性質から構造を推定するクイズを出題いたしました。普段からケムステを読んでいる皆さんにとっては簡単すぎましたか? そうでない初めましてのみなさんは、お楽しみいただけたでしょうか。難しすぎたでしょうか。

化学の専門家でもない限り、化学の構造式は難解な図にしか見えないかもしれません。しかし、化学の簡単なルールさえ知っていれば、構造式を詠み、その化学物質の性質を予想することができます。また機会があれば、このような化学クイズを出題し、化学式の詠み方を紹介したいと思います。

補足: 線構造式の見方

ジグザクの化学構造式は、線構造式と呼ばれます。線構造式は、複雑な分子の構造を書く際に情報を省略しつつも、分子の性質についての本質的な部分を残した表記方法になっています。お酒のアルコール成分であるエタノールを例に説明しましょう。エタノールの構造を丁寧に省略せずに記したものと、これをジグザグ表記に省略したものを下に示します。

省略せずに書いた式は、9つの原子が丁寧に描かれているのですが、逆に全ての原子を認識するのに時間がかかってしまいます。一方、ジグザグの式では、2つの原子 (O と H) しか示されていません。一見すると不親切なのですが、情報量が少ないぶん、一瞬で全体を認識できます。ジグザグ表記から、もとの完全な構造式を知るためには次のように考えます。

まずジグザグ表記の中では、折れ曲がった部分や先端の部分が炭素原子 C に対応します。ただし、炭素原子は結合の手を 4 本もつはずなので、折れ曲がった部分と先端の部分を C に書き換えただけでは不完全です。炭素の手が 4 本になるように、水素原子を足してやれば、省略しない構造式に復元できるのです。エタノールは原子の数が9つだけなので、ジグザグ表記に省略する恩恵は少ないですが、原子数が数十となってくると、いちいち全ての原子を書くのが大変になるため、ジグザグの構造式が威力を発揮します。

お詫び

記事公開直後に掲載しておりましたビタミン A の構造に一部誤りがありました。訂正してお詫びいたします。(平成30年12月25日)

関連記事

関連書籍

[amazonjs asin=”3527309837″ locale=”JP” title=”Molecules That Changed the World”][amazonjs asin=”475981924X” locale=”JP” title=”カリカリベーコンはどうして美味しいにおいなの? 食べ物・飲み物にまつわるカガクのギモン”]
Avatar photo

やぶ

投稿者の記事一覧

PhD候補生として固体材料を研究しています。学部レベルの基礎知識の解説から、最先端の論文の解説まで幅広く頑張ります。高専出身。

関連記事

  1. 水蒸気侵入によるデバイス劣化を防ぐ封止フィルム
  2. 免疫応答のシグナル伝達を遮断する新規な免疫抑制剤CPYPP
  3. マテリアルズ・インフォマティクスのためのSaaS miHubの活…
  4. 高分子マテリアルズ・インフォマティクスのための分子動力学計算自動…
  5. ノーベル化学賞は化学者の手に
  6. 文献検索サイトをもっと便利に:X-MOLをレビュー
  7. 人と人との「結合」を「活性化」する
  8. 高分子ってよく聞くけど、何がすごいの?

注目情報

ピックアップ記事

  1. 偽造ウイスキーをボトルに入れたまま判別する手法が開発される
  2. ベンジル酸転位 Benzilic Acid Rearrangement
  3. リピンスキーの「ルール・オブ・ファイブ」 Lipinski’s “Rule of Five”
  4. カバチニク・フィールズ反応 Kabachnik-Fields Reaction
  5. 未来博士3分間コンペティション2021(オンライン)挑戦者募集中
  6. 不活性第一級C–H結合の触媒的官能基化反応
  7. 死刑囚によるVXガスに関する論文が掲載される
  8. 「オプジーボ」の特許とおカネ
  9. 無保護カルボン酸のラジカル機構による触媒的酸化反応の開発
  10. 薄層クロマトグラフィ / thin-layer chromatography (TLC)

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2018年12月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP