[スポンサーリンク]

化学者のつぶやき

ラジカルパスでアリールをホウ素から炭素へパス!

[スポンサーリンク]

ボロナート錯体を用いたラジカルアリール転位反応が開発された。本反応はホウ素から炭素へラジカルアリール転位させることを可能にした初めての例である。

ラジカルアリール転位反応とボロナート化学

ラジカルアリール転位反応は同一分子上に生じたラジカル中心がアリール基に付加し、スピロ環状の中間体を経由して、アリール基の位置を移動できる特徴的な反応である(図 1A)。これまで様々な原子(X = C, N, O, Siなど)から炭素へのアリール転位反応が知られるが、ホウ素からラジカルアリール転位する例はない。これは、今回の著者であるStuderらやAggarwalらが報告したように、ホウ素の空のp軌道と炭素ラジカルが相互作用しやすく、アリール転位よりもホウ素原子の転位が優先されるためである(図 1B左)[1]
今回著者らはアリールボロナート錯体に着目した。ボロナート錯体は空のp軌道がなく、炭素ラジカルとアリール基が相互作用できると考えたためである(図 1B右)。ボロナート錯体のラジカル化学は近年報告例が増加している。例えば、著者ら、Aggarwalら、Renaudらによってラジカル-極性クロスオーバー反応を介したボロナート錯体の1,2-アリール転位反応が報告された(図 1C)[2]。これらの反応では、中間体にα-炭素ラジカルアニオンAが生じる。しかし、ラジカルアリール転位は起こらずに、Aが一電子移動で酸化されて双性イオン中間体Bを経由する極性機構型1,2-アリール転位が進行する。
今回、著者らは、遠位に炭素ラジカルを誘起することで、ボロナート錯体[3]のラジカルアリール転位反応を開発した(図 1D)。本手法は未達成であったホウ素から炭素へラジカルアリール転位させることを可能にした初めての例である。

図 1 A. ラジカルアリール転位反応 B. ボロナートのラジカル転位 C. ボロナート錯体のラジカル化学の例 D. 今回の研究

 

Radical Aryl Migration from Boron to Carbon
Wang, D.; Mück-Lichtenfeld, C.; Daniliuc, C. G.; Studer, A. J. Am. Chem. Soc. 2021, 143, 9320–9326.
DOI: 10.1021/jacs.1c04217

 

論文著者の紹介


研究者:Armido Studer
研究者の経歴:
1987–1991 Bachelor, ETH Zürich, Switzerland (Prof. D. Seebach)
1992–1995 PhD, ETH Zürich, Switzerland (Prof. D. Seebach)
1995–1996 Postdoc, University of Pittsburgh, USA (Prof. D. P. Curran)
1996–2000 Independent Researcher, Laboratory of Organic Chemistry, ETH Zürich, Switzerland
2000–2004 Associate Professor (C3), Philipps-Universität Marburg, Germany
2004–2009 Full Professor (C4), Organic-Chemistry Institute, WWU Münster, Germany
2009– Full Professor (W3), Organic-Chemistry Institute, WWU Münster, Germany
研究内容: ラジカル化学

論文の概要

著者らは、次のような作業仮説を立てた(図 2A)。まず、ボロン酸エステル1aとアリールリチウムからボロナート錯体2aを調製する。2aのアルケン部位に有機ラジカルが付加し炭素ラジカル3aとなる。この3aが分子内ラジカル1,5-アリール転位すればラジカルアニオン4aとなり、その後ハロアルカン(RX)との一電子移動反応により目的の化合物5aを与える、というラジカル連鎖反応である。反応開始となる有機ラジカルは、適切なハロアルカンの光照射による均等開裂で生成可能と考えた。
この仮説に基づき、著者らはEt2O中で1aとフェニルリチウムから2aを調製し、MeCN中2aとCF3Iを光照射下(365 nm)室温で反応させた(図 2B)。その結果、5aが収率71%で得られることがわかった。また、本反応は様々なアリールリチウムが適用できた。例えば、tert-ブチルフェニル(5b)、ナフタレン(5c)、ベンゾジオキソール(5d)、ベンゾチオフェン(5e)、キノリン(5f)体が合成できた。また、ボロン酸エステル1の基質適用範囲を調査したところ、2,2-ジアルキル体(1g,1h)、環状化合物(1i–1k)を用いても問題なく反応が進行した。不斉炭素中心をもつ1l1mではジアステレオ選択的に対応する5を与えた。また、一炭素少ないボロン酸エステル1nを用いたところ低収率ではあるが、1,4-アリール転位も進行した。リン酸エステルをもつハロアルカンを用いた場合でも反応は進行し、5pを収率43%で与えた。
著者らは、DFT計算を用いて1,5-ラジカルアリール転位に関する詳細を研究した。その結果、本転位反応は椅子型の遷移状態を経由していることが示唆された(図 2A下)。これは、5l5mがジアステレオ選択的に得られたことを合理的に説明できる結果である。

図 2 A. 作業仮説 B. 基質適用範囲

以上、著者らはアルケニル基をもつボロナートの1,5-ラジカルアリール転位反応を開発した。本反応はホウ素から炭素へのラジカルアリール転位を達成した初めての例である。本手法は、種々のアリールリチウムから容易にボロナート錯体を調製できるため、多様な含ホウ素ビルディングブロック合成法としての活躍が期待できる。

参考文献

  1. (a)Kaiser, D.; Noble, A.; Fasano, V.; Aggarwal, V. K. 1,2-Boron Shifts of β-Boryl Radicals Generated from Bis-boronic Esters Using Photoredox Catalysis. J. Am. Chem. Soc. 2019, 141, 14104–14109. DOI: 10.1021/jacs.9b07564 (b) Jana, K.; Bhunia, A.; Studer, A. Radical 1,3-Difunctionalization of Allylboronic Esters with Concomitant 1,2-Boron Shift. Chem. 2020, 6, 512–522. DOI: 10.1016/j.chempr.2019.12.022
  2. (a)Kischkewitz, M.; Okamoto, K.; Mück-Lichtenfeld, C.; Studer, A. Radical-Polar Crossover Reactions of Vinylboron Ate Complexes. Science 2017, 355, 936– 938. DOI: 1126/science.aal3803 (b) Kischkewitz, M.; Gerleve, C.; Studer, A. Radical-Polar Crossover Reactions of Dienylboronate Complexes: Synthesis of Functionalized Allylboronic Esters. Org. Lett. 2018, 20, 3666–3669. DOI: 10.1021/acs.orglett.8b01459 (c) Wang, D.; Mück-Lichtenfeld, C.; Studer, A. Hydrogen Atom Transfer Induced Boron Retaining Coupling of Organoboronic Esters and Organolithium Reagents. J. Am. Chem. Soc. 2019, 141, 14126–14130. DOI: 10.1021/jacs.9b07960 (d) Silvi, M.; Sandford, C.; Aggarwal, V. K. Merging Photoredox with 1,2-Metallate Rearrangements: The Photochemical Alkylation of Vinyl Boronate Complexes. J. Am. Chem. Soc. 2017, 139, 5736–5739. DOI: 10.1021/jacs.7b02569(e) Silvi, M.; Aggarwal, V. K. Radical Addition to Strained σ-Bonds Enables the Stereocontrolled Synthesis of Cyclobutyl Boronic Esters. J. Am. Chem. Soc. 2019, 141, 9511–9515. DOI: 10.1021/jacs.9b03653 (f) Tappin, N. D. C.; Gnägi-Lux, M.; Renaud, P. Radical-Triggered Three-Component Coupling Reaction of Alkenylboronates, α-Halocarbonyl Compounds, and Organolithium Reagents: The Inverse Ylid Mechanism. Chem. Eur. J. 2018, 24, 11498–11502. DOI: 10.1002/chem.201802384
  3. Wang, D.; Mück-Lichtenfeld, C.; Studer, A. 1,n-Bisborylalkanes via Radical Boron Migration. J. Am. Chem. Soc. 2020, 142, 9119−9123. DOI: 10.1021/jacs.0c03058
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 第38 回化学反応討論会でケムステをみたキャンペーン
  2. 【10月開催】第2回 マツモトファインケミカル技術セミナー 有機…
  3. Pallambins A-Dの不斉全合成
  4. Independence Day
  5. 向かい合わせになったフェノールが織りなす働き
  6. 農薬DDTが大好きな蜂
  7. 解毒薬のはなし その1 イントロダクション
  8. 化学と権力の不健全なカンケイ

注目情報

ピックアップ記事

  1. グレーサー反応 Glaser Reaction
  2. 危険物データベース:第5類(自己反応性物質)
  3. アスタチンを薬に使う!?
  4. 日本プロセス化学会2018ウインターシンポジウム
  5. 種子島沖海底泥火山における表層堆積物中の希ガスを用いた流体の起源深度の推定
  6. 第8回 FlowSTシンポジウム
  7. 化学研究ライフハック: Firefoxアドオンで化学検索をよりスピーディに!
  8. スピノシン Spinosyn
  9. 美術品保存と高分子
  10. 環境ストレスに応答する植物ホルモン

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年8月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

最新記事

有馬温泉で鉄イオン水溶液について学んできた【化学者が行く温泉巡りの旅】

有馬温泉の金泉は、塩化物濃度と鉄濃度が日本の温泉の中で最も高い温泉で、黄褐色を呈する温泉です。この記…

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

第58回Vシンポ「天然物フィロソフィ2」を開催します!

第58回ケムステVシンポジウムの開催告知をさせて頂きます!今回のVシンポは、コロナ蔓延の年202…

第76回「目指すは生涯現役!ロマンを追い求めて」櫛田 創 助教

第76回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第75回「デジタル技術は化学研究を革新できるのか?」熊田佳菜子 主任研究員

第75回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第74回「理想的な医薬品原薬の製造法を目指して」細谷 昌弘 サブグループ長

第74回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第57回ケムステVシンポ「祝ノーベル化学賞!金属有機構造体–MOF」を開催します!

第57回ケムステVシンポは、北川 進 先生らの2025年ノーベル化学賞受賞を記念して…

櫛田 創 Soh Kushida

櫛田 創(くしだそう)は日本の化学者である。筑波大学 数理物質系 物質工学域・助教。専門は物理化学、…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP