[スポンサーリンク]

化学者のつぶやき

ラジカルパスでアリールをホウ素から炭素へパス!

[スポンサーリンク]

ボロナート錯体を用いたラジカルアリール転位反応が開発された。本反応はホウ素から炭素へラジカルアリール転位させることを可能にした初めての例である。

ラジカルアリール転位反応とボロナート化学

ラジカルアリール転位反応は同一分子上に生じたラジカル中心がアリール基に付加し、スピロ環状の中間体を経由して、アリール基の位置を移動できる特徴的な反応である(図 1A)。これまで様々な原子(X = C, N, O, Siなど)から炭素へのアリール転位反応が知られるが、ホウ素からラジカルアリール転位する例はない。これは、今回の著者であるStuderらやAggarwalらが報告したように、ホウ素の空のp軌道と炭素ラジカルが相互作用しやすく、アリール転位よりもホウ素原子の転位が優先されるためである(図 1B左)[1]
今回著者らはアリールボロナート錯体に着目した。ボロナート錯体は空のp軌道がなく、炭素ラジカルとアリール基が相互作用できると考えたためである(図 1B右)。ボロナート錯体のラジカル化学は近年報告例が増加している。例えば、著者ら、Aggarwalら、Renaudらによってラジカル-極性クロスオーバー反応を介したボロナート錯体の1,2-アリール転位反応が報告された(図 1C)[2]。これらの反応では、中間体にα-炭素ラジカルアニオンAが生じる。しかし、ラジカルアリール転位は起こらずに、Aが一電子移動で酸化されて双性イオン中間体Bを経由する極性機構型1,2-アリール転位が進行する。
今回、著者らは、遠位に炭素ラジカルを誘起することで、ボロナート錯体[3]のラジカルアリール転位反応を開発した(図 1D)。本手法は未達成であったホウ素から炭素へラジカルアリール転位させることを可能にした初めての例である。

図 1 A. ラジカルアリール転位反応 B. ボロナートのラジカル転位 C. ボロナート錯体のラジカル化学の例 D. 今回の研究

 

Radical Aryl Migration from Boron to Carbon
Wang, D.; Mück-Lichtenfeld, C.; Daniliuc, C. G.; Studer, A. J. Am. Chem. Soc. 2021, 143, 9320–9326.
DOI: 10.1021/jacs.1c04217

 

論文著者の紹介


研究者:Armido Studer
研究者の経歴:
1987–1991 Bachelor, ETH Zürich, Switzerland (Prof. D. Seebach)
1992–1995 PhD, ETH Zürich, Switzerland (Prof. D. Seebach)
1995–1996 Postdoc, University of Pittsburgh, USA (Prof. D. P. Curran)
1996–2000 Independent Researcher, Laboratory of Organic Chemistry, ETH Zürich, Switzerland
2000–2004 Associate Professor (C3), Philipps-Universität Marburg, Germany
2004–2009 Full Professor (C4), Organic-Chemistry Institute, WWU Münster, Germany
2009– Full Professor (W3), Organic-Chemistry Institute, WWU Münster, Germany
研究内容: ラジカル化学

論文の概要

著者らは、次のような作業仮説を立てた(図 2A)。まず、ボロン酸エステル1aとアリールリチウムからボロナート錯体2aを調製する。2aのアルケン部位に有機ラジカルが付加し炭素ラジカル3aとなる。この3aが分子内ラジカル1,5-アリール転位すればラジカルアニオン4aとなり、その後ハロアルカン(RX)との一電子移動反応により目的の化合物5aを与える、というラジカル連鎖反応である。反応開始となる有機ラジカルは、適切なハロアルカンの光照射による均等開裂で生成可能と考えた。
この仮説に基づき、著者らはEt2O中で1aとフェニルリチウムから2aを調製し、MeCN中2aとCF3Iを光照射下(365 nm)室温で反応させた(図 2B)。その結果、5aが収率71%で得られることがわかった。また、本反応は様々なアリールリチウムが適用できた。例えば、tert-ブチルフェニル(5b)、ナフタレン(5c)、ベンゾジオキソール(5d)、ベンゾチオフェン(5e)、キノリン(5f)体が合成できた。また、ボロン酸エステル1の基質適用範囲を調査したところ、2,2-ジアルキル体(1g,1h)、環状化合物(1i–1k)を用いても問題なく反応が進行した。不斉炭素中心をもつ1l1mではジアステレオ選択的に対応する5を与えた。また、一炭素少ないボロン酸エステル1nを用いたところ低収率ではあるが、1,4-アリール転位も進行した。リン酸エステルをもつハロアルカンを用いた場合でも反応は進行し、5pを収率43%で与えた。
著者らは、DFT計算を用いて1,5-ラジカルアリール転位に関する詳細を研究した。その結果、本転位反応は椅子型の遷移状態を経由していることが示唆された(図 2A下)。これは、5l5mがジアステレオ選択的に得られたことを合理的に説明できる結果である。

図 2 A. 作業仮説 B. 基質適用範囲

以上、著者らはアルケニル基をもつボロナートの1,5-ラジカルアリール転位反応を開発した。本反応はホウ素から炭素へのラジカルアリール転位を達成した初めての例である。本手法は、種々のアリールリチウムから容易にボロナート錯体を調製できるため、多様な含ホウ素ビルディングブロック合成法としての活躍が期待できる。

参考文献

  1. (a)Kaiser, D.; Noble, A.; Fasano, V.; Aggarwal, V. K. 1,2-Boron Shifts of β-Boryl Radicals Generated from Bis-boronic Esters Using Photoredox Catalysis. J. Am. Chem. Soc. 2019, 141, 14104–14109. DOI: 10.1021/jacs.9b07564 (b) Jana, K.; Bhunia, A.; Studer, A. Radical 1,3-Difunctionalization of Allylboronic Esters with Concomitant 1,2-Boron Shift. Chem. 2020, 6, 512–522. DOI: 10.1016/j.chempr.2019.12.022
  2. (a)Kischkewitz, M.; Okamoto, K.; Mück-Lichtenfeld, C.; Studer, A. Radical-Polar Crossover Reactions of Vinylboron Ate Complexes. Science 2017, 355, 936– 938. DOI: 1126/science.aal3803 (b) Kischkewitz, M.; Gerleve, C.; Studer, A. Radical-Polar Crossover Reactions of Dienylboronate Complexes: Synthesis of Functionalized Allylboronic Esters. Org. Lett. 2018, 20, 3666–3669. DOI: 10.1021/acs.orglett.8b01459 (c) Wang, D.; Mück-Lichtenfeld, C.; Studer, A. Hydrogen Atom Transfer Induced Boron Retaining Coupling of Organoboronic Esters and Organolithium Reagents. J. Am. Chem. Soc. 2019, 141, 14126–14130. DOI: 10.1021/jacs.9b07960 (d) Silvi, M.; Sandford, C.; Aggarwal, V. K. Merging Photoredox with 1,2-Metallate Rearrangements: The Photochemical Alkylation of Vinyl Boronate Complexes. J. Am. Chem. Soc. 2017, 139, 5736–5739. DOI: 10.1021/jacs.7b02569(e) Silvi, M.; Aggarwal, V. K. Radical Addition to Strained σ-Bonds Enables the Stereocontrolled Synthesis of Cyclobutyl Boronic Esters. J. Am. Chem. Soc. 2019, 141, 9511–9515. DOI: 10.1021/jacs.9b03653 (f) Tappin, N. D. C.; Gnägi-Lux, M.; Renaud, P. Radical-Triggered Three-Component Coupling Reaction of Alkenylboronates, α-Halocarbonyl Compounds, and Organolithium Reagents: The Inverse Ylid Mechanism. Chem. Eur. J. 2018, 24, 11498–11502. DOI: 10.1002/chem.201802384
  3. Wang, D.; Mück-Lichtenfeld, C.; Studer, A. 1,n-Bisborylalkanes via Radical Boron Migration. J. Am. Chem. Soc. 2020, 142, 9119−9123. DOI: 10.1021/jacs.0c03058

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 【日産化学】画期的な生物活性を有する新規除草剤の開発  ~ジオキ…
  2. 安価な金属触媒でアルケンの高活性ヒドロシリル化を達成
  3. 分子集合体がつくるポリ[n]カテナン
  4. ナノ粒子応用の要となる「オレイル型分散剤」の謎を解明-ナノ粒子の…
  5. スポンジシリーズがアップデートされました。
  6. アジドの3つの窒素原子をすべて入れる
  7. YMC研究奨励金当選者の声
  8. 求電子的インドール:極性転換を利用したインドールの新たな反応性!…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 「原子」が見えた! なんと一眼レフで撮影に成功
  2. Rではじめるケモ・マテリアルズ・インフォマティクスープログラミング・ノックで基礎を完全習得ー
  3. 水島 公一 Koichi Mizushima
  4. ブラックマネーに御用心
  5. ご注文は海外大学院ですか?〜渡航編〜
  6. 液体中で高機能触媒として働くペロブスカイト酸化物の開発
  7. 「ELEMENT GIRLS 元素周期 ~聴いて萌えちゃう化学の基本~」+その他
  8. 自律的に化学実験するロボット科学者、研究の自動化に成功 8日間で約700回の実験、人間なら数カ月
  9. ノーベル化学賞は化学者の手に
  10. 海洋エアロゾル成分の真の光吸収効率の決定

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年8月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

最新記事

ベテラン研究者 vs マテリアルズ・インフォマティクス!?~ 研究者としてMIとの正しい向き合い方

開催日 2024/04/24 : 申込みはこちら■開催概要近年、少子高齢化、働き手の不足…

第11回 慶應有機化学若手シンポジウム

シンポジウム概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大…

薬学部ってどんなところ?

自己紹介Chemstationの新入りスタッフのねこたまと申します。現在は学部の4年生(薬学部)…

光と水で還元的環化反応をリノベーション

第609回のスポットライトリサーチは、北海道大学 大学院薬学研究院(精密合成化学研究室)の中村顕斗 …

ブーゲ-ランベルト-ベールの法則(Bouguer-Lambert-Beer’s law)

概要分子が溶けた溶液に光を通したとき,そこから出てくる光の強さは,入る前の強さと比べて小さくなる…

活性酸素種はどれでしょう? 〜三重項酸素と一重項酸素、そのほか〜

第109回薬剤師国家試験 (2024年実施) にて、以下のような問題が出題されま…

産総研がすごい!〜修士卒研究職の新育成制度を開始〜

2023年より全研究領域で修士卒研究職の採用を開始した産業技術総合研究所(以下 産総研)ですが、20…

有機合成化学協会誌2024年4月号:ミロガバリン・クロロププケアナニン・メロテルペノイド・サリチル酸誘導体・光励起ホウ素アート錯体

有機合成化学協会が発行する有機合成化学協会誌、2024年4月号がオンライン公開されています。…

日本薬学会第144年会 (横浜) に参加してきました

3月28日から31日にかけて開催された,日本薬学会第144年会 (横浜) に参加してきました.筆者自…

キシリトールのはなし

Tshozoです。 35年くらい前、ある食品メーカが「虫歯になりにくい糖分」を使ったお菓子を…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP