[スポンサーリンク]

化学者のつぶやき

パラジウムが要らない鈴木カップリング反応!?

有機合成化学の分野では、無数の触媒反応が報告されています。しかし触媒量の範囲はというと、結構あいまいである気がします。触媒量は少ないにこしたことはないんですが、いったいどこまで減らすことができるのでしょう?

今回はそれに関連するお話、特に鈴木カップリング反応に関する話題を紹介します。

鈴木-宮浦クロスカップリングについて

 1981年、鈴木・宮浦らはパラジウム触媒と塩基の存在下、フェニルボロン酸と臭化ア リールからビアリール化合物が高収率で得られることを報告しました1)。ビアリール系芳香族化合物は、生物活性物質・医薬品・液晶などの機能性材料、および 超分子化合物などの炭素骨格を成す重要な化合物です。これを極めて簡単に合成できる鈴木カップリング反応は多方面で利用されています。実際、企業化されているパラジウムクロスカップリングのうち、半分以上が鈴木カップリングであるという実績があるそうです。

suzuki_coupling

 メカニズム(触媒サイクル)を下 に示します。鈴木カップリングの進行には遷移金属触媒、特にパラジウムの存在が不可欠であると考えられてきました。

suzuki_catcycle

しかしながら2003年、下記の通り遷移金属触媒の添加を必要としない鈴木カップリング反応が報告されたのです!2), 3)

反応条件は四級アンモニウム塩TBAB (tetrabutylammonium bromide)を添加剤に、溶媒は水、塩基には炭酸ナトリウム、マイクロウエーブ(μw)照射です。

反応系に遷移金属が混入していないことを示すために、著者らは様々な証拠集めをしています。新しいガラス容器の使用、純粋な反応剤の使用はもちろん、反応系にもICP-AESを用いた微量元素分析を行い、Pdが検出限界(0.1 ppm)以下であること、他の金属元素(鈴木カップリングに触媒活性を示す報告のあるNi, Pt, Cu, Ruなど)に関しても1 ppm以下であることを確かめています。

パラジウム金属は高価ですし、製造物の医薬などに残留すると都合が悪いことがあるため、使用しないならそれに越したことはありません。この条件の研究が更に進めば、至上のクロスカップリング反応が出来上がるのでは?と考えられたわけです。

 

しかし事態は思わぬ展開を見せます。2005年になってその修正版ともいえる論文が同じ著者から報告されたのです5)

オチを始めに言ってしまいますと、塩基として用いていた炭酸ナトリウム(Na2CO3)に極微量のPdが含まれていたというのです。その量なんと20~50 ppbレベル

これは著者らが以前に使用した分析法の数100~数1000倍の検出感度を誇る、誘導結合プラズマ質量分析法(ICP-MS)を利用したことでわかりました。ppbは10億分の1、0.0000001%を意味しています。

果たしてどういうい経緯で「20~50 ppbしかないパラジウムが生成物の収率に影響している」という結論に至ったのでしょうか?

上で述べた「パラジウムの要らない」反応条件では、炭酸ナトリウムを塩基として使っていました。しかし炭酸ナトリウム以外の塩基(炭酸カリウム)を試してみたところ、低収率に留まりました。用いた塩基を超純水に溶かし反応系と同じ濃度に調製した後、Pd濃度を測定しました。炭酸ナトリウム(Na2CO3)溶液ではPd濃度が20~50 ppbであったのに対し、炭酸カリウム(K2CO3)ではPd濃度は0.09 ppbでした。一方で炭酸カリウムに酢酸パラジウムを100ppb加えると、収率の大きな向上が見られました。

こうして塩基として用いた炭酸ナトリウム中の50 ppbレベルのPd濃度が触媒として働き、生成物の収率に影響していることがわかったわけです。

結局のところはパラジウムが触媒として働いていたというオチなのですが、Pd触媒=0.0000008 mol%, TON = 1,250,000という驚くべき効率を誇る触媒系ということはできると思います。

(2005.5.30. ホットケーキ)
(※本記事は2005年に執筆された記事を「つぶやき」に移行したものです)

参考文献

1) N. Miyaura, T. Yanagi, A. Suzuki, Synth. Commun.,1981 11, 513.

2) Leadbeater, N.E.; Marco, M. Angew. Chem., Int. Ed. 2003, 42, 1407
3) Leadbeater, N.E.; Marco, M. J. Org. Chem. 2003, 68, 5660
4) 柳田 祥三, 松村 竹子 化学を変えるマイクロ波熱触媒 化学同人 (2004)
5) Riina K. Arvela, Nicholas E. Leadbeater, Michael S Sangi, Victoria A. Williams, Patricia Granados, and Robert D. Singer. J. Org. Chem. 2005, 70, 161-168
6) 有機合成化学協会誌 第56巻第8号 (1998) p632
7) Kazuhiko Takai, Tadahiro Kakiuchi, Yasutaka Kataoka, Kiitiro Utimoto. J. Org. Chem. 1994, 59, 2668-2670

The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 近赤外光を青色の光に変換するアップコンバージョン-ナノ粒子の開発…
  2. 銅触媒と可視光が促進させる不斉四置換炭素構築型C-Nカップリング…
  3. 奇妙奇天烈!植物共生菌から「8の字」型の環を持つ謎の糖が発見
  4. なぜ青色LEDがノーベル賞なのか?ー基礎的な研究背景編
  5. 君には電子のワルツが見えるかな
  6. オペレーションはイノベーションの夢を見るか? その1
  7. ボタン一つで化合物を自動合成できる機械
  8. 知の市場:無料公開講座参加者募集のご案内

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 春の褒章2010-林民生教授紫綬褒章
  2. 170年前のワインの味を化学する
  3. 2009年1月人気化学書籍ランキング
  4. ガボール・ソモライ Gabor A. Somorjai
  5. ヘメツバーガー インドール合成 Hemetsberger Indole Synthesis
  6. 複雑天然物Communesinの新規類縁体、遺伝子破壊実験により明らかに!
  7. マイケル・レヴィット Michael Levitt
  8. ウォーレン有機合成: 逆合成からのアプローチ
  9. 【悲報】HGS 分子構造模型 入手不能に
  10. イライアス・コーリー E. J. Corey

関連商品

注目情報

注目情報

最新記事

NMRの基礎知識【測定・解析編】

本シリーズでは、NMRの原理から実例までをできるだけ分かりやすくご紹介したいと思います。前回の【原理…

「人工知能時代」と人間の仕事

デジタル技術の進歩は著しく、特に、人工知能(AI)と呼ばれる機械学習システムの進歩は、世界の労働者の…

特定の刺激でタンパク質放出速度を制御できるスマート超分子ヒドロゲルの開発

第134回のスポットライトリサーチは、京都大学大学院 工学研究科 合成·生物化学専攻 浜地研究室の重…

有機合成化学協会誌2018年1月号:光学活性イミダゾリジン含有ピンサー金属錯体・直截カルコゲン化・インジウム触媒・曲面π構造・タンパク質チオエステル合成

有機合成化学協会が発行する有機合成化学協会誌、2018年1月号が昨日オンライン公開されました。…

アミン化合物をワンポットで簡便に合成 -新規還元的アミノ化触媒-:関東化学

アミン化合物は医薬品、農薬などの生理活性物質をはじめ、ポリマーなどの工業材料に至るまで様々な化学物質…

独自の有機不斉触媒反応を用いた (—)-himalensine Aの全合成

近年単離されたアルカロイド(—)-himalensine Aの全合成に初めて成功した。独自開発した二…

Chem-Station Twitter

PAGE TOP