[スポンサーリンク]

化学者のつぶやき

視覚を制御する物質からヒントを得た異性化反応

[スポンサーリンク]

最近、二重結合のシスートランス異性化反応が圧倒的に安価なビタミンB2を触媒として達成されました。その研究の発想は視覚の制御を司る物質レチナールの異性化反応から?

“A Bio-Inspired, Catalytic E → Z Isomerization of Activated Olefins”

Metternich, J. B.; Gilmour, R.; J. Am. Chem. Soc. 2015, 137, 11254.

DOI: 10.1021/jacs.5b07136

 

二重結合のシスートランス異性化反応

 二重結合のシスートランス(E/Z)異性化は、古くから研究が行われている基礎有機化学です。異性化反応は可逆反応であり、一般的にはアルケン生成物が熱力学的に安定なトランス体(E体)を優先して与えます。

一方で、熱力学的に不安定なシス体(Z体)を選択的に得ることは困難であり、光照射による異性化法が常法として知られています。置換基の立体障害により、共役構造をとれないシス(Z体)よりも、共役構造をとれるトランス(E体)の方が光を吸収するため、最終的に平衡はZ体に傾くためです(図 1)。光増感剤をもちいれば、光増感剤が光源の光を吸収し、そのエネルギーがアルケンに移動するため、より長波長の光も利用可能です。しかしながら、スチルベンやアルキルスチレン誘導体の光異性化反応は知られていましたが、多様なアルケンに対する光異性化反応は限られていました。

図1. 光照射によるスチルベンのE→Z異性化

図1. 光照射によるスチルベンのE→Z異性化

 

最近の反応例は?

(a) Co錯体を触媒として用いた1,3-ジエン誘導体の異性化反応(図 2)[1,2]

コバルト錯体に1,3-ジエンが4原子配位する中間体(平衡混合物)を経て進行します。Z体となった生成物は、立体障害(1,3-アリルひずみ)によりs-シス体をとりにくいため、コバルト錯体を形成できず、E体優先的に反応し、結果的にZ体を生成します。新しい形式のZ体選択的な異性化反応であるが、基質適用範囲が反応の特性上1,3-ジエンに限られています。

図2. Co 錯体を触媒として用いた1,3-ジエン誘導体の異性化反応

図2. Co 錯体を触媒として用いた1,3-ジエン誘導体の異性化反応

(b) Ir(ppy)3を用いた光異性化反応(図 3)[3]

効果的な光増感剤(光触媒)として、Ir(ppy)3を用いた光異性化反応が報告されています。様々なアルケンをZ体に異性化可能ではあるものの、高価なイリジウム錯体を用いなければなりません。

2015-11-01_22-23-44

今回の反応

ミュンスター大学のGilmour教授らは、二重結合のZ選択的光異性化反応における触媒のヒントを1967年に報告された「レチナールの光異性化反応」から得ました。

レチナール(ビタミンAの一種)は視覚の制御を司る化合物の1つであり、ビタミンB2(リボフラビン)によってE体からZ体に異性化することが知られていました[4]。著者らはこれを触媒として光照射による一般的なアルケンのシスートランス異性化反応を試みました(図 4)。

図4 リボフラビン触媒によるシスートランス光異性化反応

図4 リボフラビン触媒によるシスートランス光異性化反応

反応の特徴

著者らはリボフラビンを触媒として用いた光異性化反応を、様々なエノン誘導体を用いて行いました。①—③にその特徴を示します。

  1. β位置換基(R1) :電子供与能が高い置換基の方が、Z選択性が高い
  2. カルボニル官能基(R2) :アルデヒドやアミド、ケトンでも高いZ体選択性を与える
  3. 芳香環(Ar):芳香環上にオルト位置換基を有するもの、アリール基が五員環ヘテロ芳香環である場合Z体選択性が低下する

1.の結果からラジカル中間体の安定性が反応に影響を与えていることが示唆されます。また、3.より立体的要因によるE体とZ体の共役長の差異が高選択性の鍵であることがわかります。何れにしても既存の光異性化反応と同等の特徴を有していることが明らかとなりました。

特筆すべき点は、触媒であるリボフラビンの価格。

前述したIr(ppy)3¥111,600/g (Aldrich)、汎用される有機光触媒Acr-Mes(9-Mesityl-10-methylacridinium perchlorate)は¥8,600/g (TCI)であるのに対して、リボフラビン(riboflavin)は¥150/g(Aldrich)とそのコストは50分の1から750分の1となる(図 5)。

図5 非常に安価なリボフラビン

図5 非常に安価なリボフラビン

まとめ

今回著者らは安価に市販されているビタミンB2を光触媒として用いることで、ケイ皮酸誘導体の高いZ選択的異性化反応を達成しまいた。

今回の報告はまさに新反応開発における温故知新の好例であり、先人達の研究に再び光を当てた発見であるといえると思います。

 

参考文献

  1. Pünner, F.; Schmidt, A.; Hilt, G. Angew. Chem., Int. Ed. 2012, 51, 1270. DOI: 10.1002/anie.201107512
  2. Timsina, Y. N.; Biswas, S.; RajanBabu, T. V. J. Am. Chem. Soc. 2014, 136, 6215. DOI: 10.1021/ja501979g
  3. Singh, K.; Staig, S. J.; Weaver, J. D. J. Am. Chem. Soc. 2014, 136, 5275. DOI: 10.1021/ja5019749
  4. Walker, A. G.; Radda, G. K. Nature, 1967, 215, 1483. DOI: 10.1038/2151483a0

 

関連書籍

 

bona

bona

投稿者の記事一覧

愛知で化学を教えています。よろしくお願いします。

関連記事

  1. ChemDraw の使い方【作図編④: 反応機構 (前編)】
  2. Chemistry on Thanksgiving Day
  3. 禅問答のススメ ~非論理に向き合う~
  4. 多角的英語勉強法~オンライン英会話だけで満足していませんか~
  5. マイクロ波化学の事業化プラットフォーム 〜実証設備やサービス事例…
  6. Altmetric Score Top 100をふりかえる ~2…
  7. 2つのグリニャールからスルホンジイミンを作る
  8. Cell Pressが化学のジャーナルを出版

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. バンバーガー転位 Bamberger Rearrangement
  2. 高収率・高選択性―信頼性の限界はどこにある?
  3. 黒よりも黒い? 「最も暗い」物質 米大学チーム作製
  4. ホウ素と窒素固定のおはなし
  5. Twitter発!「笑える(?)実験大失敗集」
  6. グラーメ・モード Graeme Moad
  7. おまえら英語よりもタイピングやろうぜ ~中級編~
  8. やまと根岸通り
  9. アカデミックから民間企業への転職について考えてみる
  10. ダイヤモンドは砕けない

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

金属ナトリウム分散体(SD Super Fine ™)

概要金属ナトリウム分散体(SD Super Fine ™)は、金属ナトリウムの微粒…

アクセラレーションプログラム 「BRAVE 2021 Spring」 参加チームのエントリー受付中!(5/10〆切)

Beyond Next Ventures株式会社(本社:東京都中央区、代表取締役社⻑:伊藤毅、以下「…

赤キャベツから新しい青色天然着色料を発見 -青色1号に代わる美しく安定なアントシアニン色素-

青の食品着色料として広く使われる化学合成の「青色1号」とほぼ同じ色で、長期保存時の安定性に優れた天然…

砂塚 敏明 Toshiaki Sunazuka

砂塚 敏明 (すなづか としあき)は、日本の有機化学者である。学校法人北里研究所 理事、北里大学大村…

【ケムステSlackに訊いてみた】有機合成を学ぶオススメ参考書を教えて!

日本初のオープン化学コミュニティ・ケムステSlackを立ち上げてもうすぐ2年が経ちます。かな…

第三回ケムステVプレミアレクチャー「夢のある天然物創薬」を開催します!

そろそろケムステVシンポも開始しますが、その前にもう一度Vプレレクのお知らせです。3月末に第…

第8回慶應有機化学若手シンポジウム

ご案内有機合成・反応化学、天然物化学・ケミカルバイオロジー、生物 有機化学・医化学、有機材料化学…

第141回―「天然と人工の高分子を融合させる」Sébastien Perrier教授

第141回の海外化学者インタビューはセバスチャン・ペリエ教授です。シドニー大学化学科(訳注:現在はワ…

Chem-Station Twitter

PAGE TOP