[スポンサーリンク]

化学者のつぶやき

視覚を制御する物質からヒントを得た異性化反応

[スポンサーリンク]

最近、二重結合のシスートランス異性化反応が圧倒的に安価なビタミンB2を触媒として達成されました。その研究の発想は視覚の制御を司る物質レチナールの異性化反応から?

“A Bio-Inspired, Catalytic E → Z Isomerization of Activated Olefins”

Metternich, J. B.; Gilmour, R.; J. Am. Chem. Soc. 2015, 137, 11254.

DOI: 10.1021/jacs.5b07136

 

二重結合のシスートランス異性化反応

 二重結合のシスートランス(E/Z)異性化は、古くから研究が行われている基礎有機化学です。異性化反応は可逆反応であり、一般的にはアルケン生成物が熱力学的に安定なトランス体(E体)を優先して与えます。

一方で、熱力学的に不安定なシス体(Z体)を選択的に得ることは困難であり、光照射による異性化法が常法として知られています。置換基の立体障害により、共役構造をとれないシス(Z体)よりも、共役構造をとれるトランス(E体)の方が光を吸収するため、最終的に平衡はZ体に傾くためです(図 1)。光増感剤をもちいれば、光増感剤が光源の光を吸収し、そのエネルギーがアルケンに移動するため、より長波長の光も利用可能です。しかしながら、スチルベンやアルキルスチレン誘導体の光異性化反応は知られていましたが、多様なアルケンに対する光異性化反応は限られていました。

図1. 光照射によるスチルベンのE→Z異性化

図1. 光照射によるスチルベンのE→Z異性化

 

最近の反応例は?

(a) Co錯体を触媒として用いた1,3-ジエン誘導体の異性化反応(図 2)[1,2]

コバルト錯体に1,3-ジエンが4原子配位する中間体(平衡混合物)を経て進行します。Z体となった生成物は、立体障害(1,3-アリルひずみ)によりs-シス体をとりにくいため、コバルト錯体を形成できず、E体優先的に反応し、結果的にZ体を生成します。新しい形式のZ体選択的な異性化反応であるが、基質適用範囲が反応の特性上1,3-ジエンに限られています。

図2. Co 錯体を触媒として用いた1,3-ジエン誘導体の異性化反応

図2. Co 錯体を触媒として用いた1,3-ジエン誘導体の異性化反応

(b) Ir(ppy)3を用いた光異性化反応(図 3)[3]

効果的な光増感剤(光触媒)として、Ir(ppy)3を用いた光異性化反応が報告されています。様々なアルケンをZ体に異性化可能ではあるものの、高価なイリジウム錯体を用いなければなりません。

2015-11-01_22-23-44

今回の反応

ミュンスター大学のGilmour教授らは、二重結合のZ選択的光異性化反応における触媒のヒントを1967年に報告された「レチナールの光異性化反応」から得ました。

レチナール(ビタミンAの一種)は視覚の制御を司る化合物の1つであり、ビタミンB2(リボフラビン)によってE体からZ体に異性化することが知られていました[4]。著者らはこれを触媒として光照射による一般的なアルケンのシスートランス異性化反応を試みました(図 4)。

図4 リボフラビン触媒によるシスートランス光異性化反応

図4 リボフラビン触媒によるシスートランス光異性化反応

反応の特徴

著者らはリボフラビンを触媒として用いた光異性化反応を、様々なエノン誘導体を用いて行いました。①—③にその特徴を示します。

  1. β位置換基(R1) :電子供与能が高い置換基の方が、Z選択性が高い
  2. カルボニル官能基(R2) :アルデヒドやアミド、ケトンでも高いZ体選択性を与える
  3. 芳香環(Ar):芳香環上にオルト位置換基を有するもの、アリール基が五員環ヘテロ芳香環である場合Z体選択性が低下する

1.の結果からラジカル中間体の安定性が反応に影響を与えていることが示唆されます。また、3.より立体的要因によるE体とZ体の共役長の差異が高選択性の鍵であることがわかります。何れにしても既存の光異性化反応と同等の特徴を有していることが明らかとなりました。

特筆すべき点は、触媒であるリボフラビンの価格。

前述したIr(ppy)3¥111,600/g (Aldrich)、汎用される有機光触媒Acr-Mes(9-Mesityl-10-methylacridinium perchlorate)は¥8,600/g (TCI)であるのに対して、リボフラビン(riboflavin)は¥150/g(Aldrich)とそのコストは50分の1から750分の1となる(図 5)。

図5 非常に安価なリボフラビン

図5 非常に安価なリボフラビン

まとめ

今回著者らは安価に市販されているビタミンB2を光触媒として用いることで、ケイ皮酸誘導体の高いZ選択的異性化反応を達成しまいた。

今回の報告はまさに新反応開発における温故知新の好例であり、先人達の研究に再び光を当てた発見であるといえると思います。

 

参考文献

  1. Pünner, F.; Schmidt, A.; Hilt, G. Angew. Chem., Int. Ed. 2012, 51, 1270. DOI: 10.1002/anie.201107512
  2. Timsina, Y. N.; Biswas, S.; RajanBabu, T. V. J. Am. Chem. Soc. 2014, 136, 6215. DOI: 10.1021/ja501979g
  3. Singh, K.; Staig, S. J.; Weaver, J. D. J. Am. Chem. Soc. 2014, 136, 5275. DOI: 10.1021/ja5019749
  4. Walker, A. G.; Radda, G. K. Nature, 1967, 215, 1483. DOI: 10.1038/2151483a0

 

関連書籍

 

bona

bona

投稿者の記事一覧

愛知で化学を教えています。よろしくお願いします。

関連記事

  1. 日本プロセス化学会2018ウインターシンポジウム
  2. 史上最も不運な化学者?
  3. 光触媒が可能にする新規C-H/N-Hカップリング
  4. CRISPRで薬剤分子-タンパク相互作用を解明する
  5. 研究者向けプロフィールサービス徹底比較!
  6. 化学者たちのエッセイ集【Part1】
  7. メタロペプチド触媒を用いるFc領域選択的な抗体修飾法
  8. Micro Flow Reactor ~革新反応器の世界~ (入…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 第一手はこれだ!:古典的反応から最新反応まで2 |第7回「有機合成実験テクニック」(リケラボコラボレーション)
  2. ドーパミンで音楽にシビれる
  3. 「アジア発メジャー」狙う大陽日酸、欧州市場に参入
  4. 付設展示会に行こう!ー和光純薬編ー
  5. パターノ・ビューチ反応 Paterno-Buchi Reaction
  6. 化学物質の環境リスクを学べる「かんたん化学物質ガイド」開設
  7. 中性ケイ素触媒でヒドロシリル化
  8. 170年前のワインの味を化学する
  9. 第九回 タンパク質に新たな付加価値を-Tom Muir教授
  10. 研究室での英語【Part1】

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

三井化学岩国大竹工場の設備が未来技術遺産に登録

三井化学はこのほど、岩国大竹工場(山口県和木町)にあるポリエチレン製造装置が、国立科学博物館により、…

【金はなぜ金色なの?】 相対論効果 Relativistic Effects

相対性理論は、光速近くで運動する物体で顕著になる現象を表した理論です。電子や原子などのミクロな物質を…

gem-ジフルオロアルケンの新奇合成法

トリフロンにグリニャール試薬を作用させるだけで多置換gem-ジフルオロアルケンの合成に成功した。フッ…

パーソナル有機合成装置 EasyMax 402 をデモしてみた

合成装置といえばなにを思い浮かべるでしょうか?いま話題のロボット科学者?それともカップリング…

湿度によって色が変わる分子性多孔質結晶を発見

第277回のスポットライトリサーチは、筑波大学 数理物質系 山本研究室 助教の山岸 洋(やまぎし ひ…

【書籍】機器分析ハンドブック1 有機・分光分析編

kindle版↓概要はじめて機器を使う学生にもわかるよう,代表的な分析機器の…

第46回「趣味が高じて化学者に」谷野圭持教授

第46回目の研究者インタビューです。今回のインタビューは第10回目のケムステVシンポ講演者の一人であ…

【山口代表も登壇!!】10/19-11/18ケミカルマテリアルJapan2020-ONLINE-

「ケミカルマテリアルJapan2020-ONLINEー(主催:株式会社化学工業日報社)」は、未来に向…

Chem-Station Twitter

PAGE TOP