[スポンサーリンク]

化学者のつぶやき

リンを光誘起!σ-ホールでクロス求電子剤C–PIIIカップリング反応

[スポンサーリンク]

プニクトゲン結合(PnB)を利用するクロロホスフィンと有機ハロゲン化合物のクロス求電子剤C–PIIIカップリング反応が開発された。クロロホスフィン上のσホールとアルキルアミンの相互作用により形成される電荷移動錯体が光励起され反応が進行する。

クロロホスフィンと有機ハロゲン化合物のクロス求電子剤C–PIIIカップリング反応

三価のリン化合物は、配位子や有機触媒、農薬、材料などの分野で広く利用されることから、効率的な合成法の開発が化学者の関心を集める[1]。近年、二級ホスフィンや金属リン化合物に代わり、比較的安定なクロロホスフィンを出発物質とする合成法が次々に報告された(図1A)[2]。現在までに、ニッケル/亜鉛を用いた触媒反応が主に研究されてきたほか、シランを用いたラジカル反応なども報告されている。

リンを含む15族元素(プニクトゲン; Pn)の特徴として、原子上の電荷分布の偏りによって生じた正電荷領域(σ-ホール)が、電子供与性分子と非共有結合性相互作用を示すことが知られている(プニクトゲン結合; PnB)[3]。PnBを触媒に応用した初の例として、2018年にMatileらは、三価のアンチモン化合物上のσ-ホールとクロロ基のPnBによって、クロロ基の脱離反応を促進させた(図1B)[4]。また、本論文著者であるChenらは以前、ホスホニウム塩とルイス塩基のPnBを利用し、光誘起電子移動/ラジカル付加を経由した2-インドリノンの合成を報告した(図1C)[5]

今回Chenらは、クロロホスフィンとルイス塩基による電荷移動錯体の形成と光照射によりホスフィニルラジカルを生成し、SET/ハロゲン原子移動(XAT)をともなうクロス求電子剤C–PIIIカップリング反応に着手した(図1D)。ニッケル触媒やシランを用いる先述の合成法と比較して、使用する試薬がクロロホスフィンとルイス塩基のみであるという利便性が特徴である。

図1. (A) 現在のクロス求電子剤C–PIIIカップリング反応 (B) 脱離反応へのPnBの利用 (C) PnBを利用したラジカル反応(D) 本研究

 

“Cross-Electrophile C–PIII Coupling of Chlorophosphines with Organic Halides: Photoinduced PIII and Aminoalkyl Radical Generation Enabled by Pnictogen Bonding”

Tu, Y.-L.; Zhang, B.-B.; Qiu, B.-S.; Wang, Z.-X.; Chen, X.-Y. Angew. Chem., Int. Ed. 2023, 62, e202310764

DOI: 10.1002/anie.202310764

 

論文著者の紹介

研究者: Xiang-Yu Chen (陈祥雨)

研究者の経歴:
2005–2009               B.S., Xiangtan University, China
2009–2014               Ph.D., Institute of Chemistry, Chinese Academy of Sciences, China (Prof. Song Ye)
2014–2016               Postdoc, Institute of Chemistry, Chinese Academy of Sciences, China(Prof. Song Ye)
Postdoc, University of Vienna, Austria (Prof. Nuno Maulide)
2016–2020               Postdoc, RWTH Aachen University, Germany
(Prof. Dieter Enders, Prof. Franziska Schoenebeck, and Prof. Magnus Rueping)
2020–                    Associate Professor, University of Chinese Academy of Sciences, China
研究内容: 不斉触媒および有機金属触媒の開発、フリーラジカル化学

論文の概要

Chenらはまず、クロロジフェニルホスフィンの静電ポテンシャル(ESP)を算出し、P上にσ-ホールが存在することを確認した(図2A左)。続いて、クロロジフェニルホスフィンとN,N,N′,N′′,N′′-ペンタメチルジエチレントリアミン(PMDTA)が形成する錯体の構造最適化では、P–N間の距離がファンデルワールス半径より短く、P上のσ-ホールとNの非共有電子対の間でPnB形成が見られた(図2A右)。そのほか、NCI(non-covalent interaction) plotとQTAIM(the quantum theory of atoms in molecules)による計算結果からも、PnB形成が支持された。

本反応では、アセトニトリル中、PMDTA存在下、クロロホスフィン1と有機ハロゲン化合物2に対して青色光を照射すると、クロスカップリング体3(or 3′)が得られた(図2B)。本反応は、アルキル基、アリール基、ピリジル基などを有する2に適用でき、対応する三価のリン化合物3a, 3b, 3′c, 3′dを与えた。また、天然物であるコレステロールから誘導されたアルキルクロリド2eでも反応が進行してリン化合物3eを得た。

機構解明実験に基づき、次の推定反応機構が提唱された(図2C)。まず、PnBによって形成するクロロホスフィン1とPMDTA (4)の電荷移動錯体(CTC)の光誘起電子移動により、ホスフィニルラジカル5とアミノアルキルラジカルカチオン7が生じる。生成した5は二量化してジホスフィン6を与える。一方で、7の脱プロトン化により生じたα-アミノアルキルラジカル8と、有機ハロゲン化合物2のXATにより炭素ラジカル10が生成する。最後に、10とジホスフィン6のSH2反応を経てクロスカップリング体3′を与える。

図2. (A) σ-ホールおよびPnBの計算結果 (B) 基質適用範囲 (C) 推定反応機構

 

 以上、P上のσ-ホールとアルキルアミンのPnBを利用したクロス求電子剤C–PIIIカップリング反応が開発された。σ-ホールの利用が、今後の反応開発における新たな切り口となることが期待される。

参考文献

  1. (a) Guo, H.; Fan, Y. C.; Sun, Z.; Wu, Y.; Kwon, O. Phosphine Organocatalysis. Chem. Rev. 2018, 118, 10049–10293. DOI: 10.1021/acs.chemrev.8b00081(b) Ni, H.; Chan, W.-L.; Lu, Y. Phosphine-Catalyzed Asymmetric Organic Reactions. Chem. Rev. 2018, 118, 9344–9411. DOI: 10.1021/acs.chemrev.8b00261(c) Rojo, P.; Riera, A.; Verdaguer, X. Bulky P-Stereogenic Ligands. A Success Story in Asymmetric Catalysis. Coord. Chem. Rev. 2023, 489, 215192. DOI: 10.1016/j.ccr.2023.215192
  2. (a) Ager, D. J.; East, M. B.; Eisenstadt, A.; Laneman, S. A.Convenient and Direct Preparation of Tertiary Phosphines via Nickel-Catalysed Cross-Coupling Chem. Commun. 1997, 24, 2359–2360. DOI: 10.1039/a705106i (b) Budnikova, Y.; Kargin, Y.; Nédélec, J.-Y.; Périchon, J. Nickel-Catalysed Electrochemical Coupling Between Mono- or Di-chlorophenylphosphines and Aryl or Heteroaryl Halides. J. Organomet. Chem. 1999, 575, 63–66. DOI: 10.1016/S0022-328X(98)00963-2 (c) Le Gall, E.; Troupel, M.; Nédélec, J.-Y. Nickel-Catalyzed Reductive Coupling of Chlorodiphenylphosphine with Aryl Bromides into Functionalized Triarylphosphines. Tetrahedron 2003, 59, 7497–7500. DOI: 10.1016/S0040-4020(03)01180-3 (d) Sato, A.; Yorimitsu, H.; Oshima, K. Radical Phosphination of Organic Halides and Alkyl Imidazole-1-carbothioates. J. Am. Chem. Soc. 2006, 128, 4240–4241. DOI: 10.1021/ja058783h (e) Nowrouzi, N.; Keshtgar, S.; Jahromi, E. B. Ligand-free Palladium Catalyzed Phosphorylation of Aryl Iodides. Tetrahedron Lett. 2016, 57, 348–350. DOI: 10.1016/j.tetlet.2015.12.018 (f) Jin, S.; Haug, G. C.; Nguyen, V. T.; Flores-Hansen, C.; Arman, H. D.; Larionov, O. V. Decarboxylative Phosphine Synthesis: Insights into the Catalytic, Autocatalytic, and Inhibitory Roles of Additives and Intermediates. ACS Catal. 2019, 9, 9764–9774. DOI: 10.1021/acscatal.9b03366 (g) Cheng, R.; Li, C.-J. Csp3–PIII Bond Formation via Cross-Coupling of Umpolung Carbonyls with Phosphine Halides Catalyzed by Nickel. Angew. Chem., Int. Ed. 2023, 62, e202301730. DOI: 10.1002/anie.202301730
  3. (a) Scheiner, S. The Pnicogen Bond: Its Relation to Hydrogen, Halogen, and Other Noncovalent Bonds. Acc. Chem. Res. 2013, 46, 280–288. DOI:10.1021/ar3001316 (b) Breugst, M.; Koenig, J. J. σ-Hole Interactions in Catalysis. Eur. J. Org. Chem. 2020, 34, 5473–5487. DOI: 10.1002/ejoc.202000660(c) Mahmudov, K. T.; Gurbanov, A. V.; Aliyeva, V. A.; Resnati, G.; Pombeiro, A. J. Pnictogen Bonding in Coordination Chemistry. Coord. Chem. Rev. 2020,418, 213381. DOI: 10.1016/j.ccr.2020.213381
  4. Benz, S.; Poblador-Bahamonde, A. I.; Low-Ders, N.; Matile, S. Catalysis with Pnictogen, Chalcogen, and Halogen Bonds. Angew. Chem., Int. Ed. 2018, 57, 5408–5412. DOI: 10.1002/anie.201801452
  5. Liu, Q.; Lu, Y.; Sheng, H.; Zhang, C.-S.; Su, X.-D.; Wang, Z.-X.; Chen, X.-Y.Visible-Light-Induced Selective Photolysis of Phosphonium Iodide Salts for Monofluoromethylations. Angew. Chem., Int. Ed. 2021, 60, 25477–25484. DOI: 10.1002/anie.202111006
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. なんとオープンアクセス!Modern Natural Produ…
  2. ノーベル賞いろいろ
  3. 3.11 14:46 ②
  4. ペプチド縮合を加速する生体模倣型有機触媒
  5. 「リチウムイオン電池用3D炭素電極の開発」–Caltech・Gr…
  6. 生物に打ち勝つ人工合成?アルカロイド骨格多様化合成法の開発
  7. マテリアルズ・インフォマティクスに欠かせないデータ整理の進め方と…
  8. NCL用ペプチド合成を簡便化する「MEGAリンカー法」

注目情報

ピックアップ記事

  1. ライアン・シェンビ Ryan A. Shenvi
  2. ブーゲ-ランベルト-ベールの法則(Bouguer-Lambert-Beer’s law)
  3. ペリプラノン
  4. 前代未聞のねつ造論文 学会発表したデータを基に第三者が論文を発表
  5. 褐色の要因となる巨大な光合成膜タンパク質複合体の立体構造の解明
  6. Google日本語入力の専門用語サジェストが凄すぎる件:化学編
  7. 露出した銀ナノクラスター表面を保持した、高機能・高安定なハイブリッド分子触媒の開発
  8. 眞鍋 史乃 Manabe Shino
  9. エナゴ「学術英語アカデミー」と記事の利用許諾契約を結びました
  10. 【味の素ファインテクノ】新卒採用情報(2025卒)

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年12月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP