[スポンサーリンク]

化学者のつぶやき

リンを光誘起!σ-ホールでクロス求電子剤C–PIIIカップリング反応

[スポンサーリンク]

プニクトゲン結合(PnB)を利用するクロロホスフィンと有機ハロゲン化合物のクロス求電子剤C–PIIIカップリング反応が開発された。クロロホスフィン上のσホールとアルキルアミンの相互作用により形成される電荷移動錯体が光励起され反応が進行する。

クロロホスフィンと有機ハロゲン化合物のクロス求電子剤C–PIIIカップリング反応

三価のリン化合物は、配位子や有機触媒、農薬、材料などの分野で広く利用されることから、効率的な合成法の開発が化学者の関心を集める[1]。近年、二級ホスフィンや金属リン化合物に代わり、比較的安定なクロロホスフィンを出発物質とする合成法が次々に報告された(図1A)[2]。現在までに、ニッケル/亜鉛を用いた触媒反応が主に研究されてきたほか、シランを用いたラジカル反応なども報告されている。

リンを含む15族元素(プニクトゲン; Pn)の特徴として、原子上の電荷分布の偏りによって生じた正電荷領域(σ-ホール)が、電子供与性分子と非共有結合性相互作用を示すことが知られている(プニクトゲン結合; PnB)[3]。PnBを触媒に応用した初の例として、2018年にMatileらは、三価のアンチモン化合物上のσ-ホールとクロロ基のPnBによって、クロロ基の脱離反応を促進させた(図1B)[4]。また、本論文著者であるChenらは以前、ホスホニウム塩とルイス塩基のPnBを利用し、光誘起電子移動/ラジカル付加を経由した2-インドリノンの合成を報告した(図1C)[5]

今回Chenらは、クロロホスフィンとルイス塩基による電荷移動錯体の形成と光照射によりホスフィニルラジカルを生成し、SET/ハロゲン原子移動(XAT)をともなうクロス求電子剤C–PIIIカップリング反応に着手した(図1D)。ニッケル触媒やシランを用いる先述の合成法と比較して、使用する試薬がクロロホスフィンとルイス塩基のみであるという利便性が特徴である。

図1. (A) 現在のクロス求電子剤C–PIIIカップリング反応 (B) 脱離反応へのPnBの利用 (C) PnBを利用したラジカル反応(D) 本研究

 

“Cross-Electrophile C–PIII Coupling of Chlorophosphines with Organic Halides: Photoinduced PIII and Aminoalkyl Radical Generation Enabled by Pnictogen Bonding”

Tu, Y.-L.; Zhang, B.-B.; Qiu, B.-S.; Wang, Z.-X.; Chen, X.-Y. Angew. Chem., Int. Ed. 2023, 62, e202310764

DOI: 10.1002/anie.202310764

 

論文著者の紹介

研究者: Xiang-Yu Chen (陈祥雨)

研究者の経歴:
2005–2009               B.S., Xiangtan University, China
2009–2014               Ph.D., Institute of Chemistry, Chinese Academy of Sciences, China (Prof. Song Ye)
2014–2016               Postdoc, Institute of Chemistry, Chinese Academy of Sciences, China(Prof. Song Ye)
Postdoc, University of Vienna, Austria (Prof. Nuno Maulide)
2016–2020               Postdoc, RWTH Aachen University, Germany
(Prof. Dieter Enders, Prof. Franziska Schoenebeck, and Prof. Magnus Rueping)
2020–                    Associate Professor, University of Chinese Academy of Sciences, China
研究内容: 不斉触媒および有機金属触媒の開発、フリーラジカル化学

論文の概要

Chenらはまず、クロロジフェニルホスフィンの静電ポテンシャル(ESP)を算出し、P上にσ-ホールが存在することを確認した(図2A左)。続いて、クロロジフェニルホスフィンとN,N,N′,N′′,N′′-ペンタメチルジエチレントリアミン(PMDTA)が形成する錯体の構造最適化では、P–N間の距離がファンデルワールス半径より短く、P上のσ-ホールとNの非共有電子対の間でPnB形成が見られた(図2A右)。そのほか、NCI(non-covalent interaction) plotとQTAIM(the quantum theory of atoms in molecules)による計算結果からも、PnB形成が支持された。

本反応では、アセトニトリル中、PMDTA存在下、クロロホスフィン1と有機ハロゲン化合物2に対して青色光を照射すると、クロスカップリング体3(or 3′)が得られた(図2B)。本反応は、アルキル基、アリール基、ピリジル基などを有する2に適用でき、対応する三価のリン化合物3a, 3b, 3′c, 3′dを与えた。また、天然物であるコレステロールから誘導されたアルキルクロリド2eでも反応が進行してリン化合物3eを得た。

機構解明実験に基づき、次の推定反応機構が提唱された(図2C)。まず、PnBによって形成するクロロホスフィン1とPMDTA (4)の電荷移動錯体(CTC)の光誘起電子移動により、ホスフィニルラジカル5とアミノアルキルラジカルカチオン7が生じる。生成した5は二量化してジホスフィン6を与える。一方で、7の脱プロトン化により生じたα-アミノアルキルラジカル8と、有機ハロゲン化合物2のXATにより炭素ラジカル10が生成する。最後に、10とジホスフィン6のSH2反応を経てクロスカップリング体3′を与える。

図2. (A) σ-ホールおよびPnBの計算結果 (B) 基質適用範囲 (C) 推定反応機構

 

 以上、P上のσ-ホールとアルキルアミンのPnBを利用したクロス求電子剤C–PIIIカップリング反応が開発された。σ-ホールの利用が、今後の反応開発における新たな切り口となることが期待される。

参考文献

  1. (a) Guo, H.; Fan, Y. C.; Sun, Z.; Wu, Y.; Kwon, O. Phosphine Organocatalysis. Chem. Rev. 2018, 118, 10049–10293. DOI: 10.1021/acs.chemrev.8b00081(b) Ni, H.; Chan, W.-L.; Lu, Y. Phosphine-Catalyzed Asymmetric Organic Reactions. Chem. Rev. 2018, 118, 9344–9411. DOI: 10.1021/acs.chemrev.8b00261(c) Rojo, P.; Riera, A.; Verdaguer, X. Bulky P-Stereogenic Ligands. A Success Story in Asymmetric Catalysis. Coord. Chem. Rev. 2023, 489, 215192. DOI: 10.1016/j.ccr.2023.215192
  2. (a) Ager, D. J.; East, M. B.; Eisenstadt, A.; Laneman, S. A.Convenient and Direct Preparation of Tertiary Phosphines via Nickel-Catalysed Cross-Coupling Chem. Commun. 1997, 24, 2359–2360. DOI: 10.1039/a705106i (b) Budnikova, Y.; Kargin, Y.; Nédélec, J.-Y.; Périchon, J. Nickel-Catalysed Electrochemical Coupling Between Mono- or Di-chlorophenylphosphines and Aryl or Heteroaryl Halides. J. Organomet. Chem. 1999, 575, 63–66. DOI: 10.1016/S0022-328X(98)00963-2 (c) Le Gall, E.; Troupel, M.; Nédélec, J.-Y. Nickel-Catalyzed Reductive Coupling of Chlorodiphenylphosphine with Aryl Bromides into Functionalized Triarylphosphines. Tetrahedron 2003, 59, 7497–7500. DOI: 10.1016/S0040-4020(03)01180-3 (d) Sato, A.; Yorimitsu, H.; Oshima, K. Radical Phosphination of Organic Halides and Alkyl Imidazole-1-carbothioates. J. Am. Chem. Soc. 2006, 128, 4240–4241. DOI: 10.1021/ja058783h (e) Nowrouzi, N.; Keshtgar, S.; Jahromi, E. B. Ligand-free Palladium Catalyzed Phosphorylation of Aryl Iodides. Tetrahedron Lett. 2016, 57, 348–350. DOI: 10.1016/j.tetlet.2015.12.018 (f) Jin, S.; Haug, G. C.; Nguyen, V. T.; Flores-Hansen, C.; Arman, H. D.; Larionov, O. V. Decarboxylative Phosphine Synthesis: Insights into the Catalytic, Autocatalytic, and Inhibitory Roles of Additives and Intermediates. ACS Catal. 2019, 9, 9764–9774. DOI: 10.1021/acscatal.9b03366 (g) Cheng, R.; Li, C.-J. Csp3–PIII Bond Formation via Cross-Coupling of Umpolung Carbonyls with Phosphine Halides Catalyzed by Nickel. Angew. Chem., Int. Ed. 2023, 62, e202301730. DOI: 10.1002/anie.202301730
  3. (a) Scheiner, S. The Pnicogen Bond: Its Relation to Hydrogen, Halogen, and Other Noncovalent Bonds. Acc. Chem. Res. 2013, 46, 280–288. DOI:10.1021/ar3001316 (b) Breugst, M.; Koenig, J. J. σ-Hole Interactions in Catalysis. Eur. J. Org. Chem. 2020, 34, 5473–5487. DOI: 10.1002/ejoc.202000660(c) Mahmudov, K. T.; Gurbanov, A. V.; Aliyeva, V. A.; Resnati, G.; Pombeiro, A. J. Pnictogen Bonding in Coordination Chemistry. Coord. Chem. Rev. 2020,418, 213381. DOI: 10.1016/j.ccr.2020.213381
  4. Benz, S.; Poblador-Bahamonde, A. I.; Low-Ders, N.; Matile, S. Catalysis with Pnictogen, Chalcogen, and Halogen Bonds. Angew. Chem., Int. Ed. 2018, 57, 5408–5412. DOI: 10.1002/anie.201801452
  5. Liu, Q.; Lu, Y.; Sheng, H.; Zhang, C.-S.; Su, X.-D.; Wang, Z.-X.; Chen, X.-Y.Visible-Light-Induced Selective Photolysis of Phosphonium Iodide Salts for Monofluoromethylations. Angew. Chem., Int. Ed. 2021, 60, 25477–25484. DOI: 10.1002/anie.202111006
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. ルイス酸添加で可視光レドックス触媒の機構をスイッチする
  2. CEMS Topical Meeting Online 超分子ポ…
  3. ガン細胞を掴んで離さない分子の開発
  4. 「MI×データ科学」コース実施要綱~データ科学を利用した材料研究…
  5. 不活性アルケンの分子間[2+2]環化付加反応
  6. ImageJがWebブラウザ上で利用可能に
  7. ナイロンに関する一騒動 ~ヘキサメチレンジアミン供給寸断
  8. 最強の文献管理ソフトはこれだ!

注目情報

ピックアップ記事

  1. 第37回 糖・タンパク質の化学から生物学まで―Ben Davis教授
  2. デュアルディスプレイDNAコード化化合物ライブラリーの改良法
  3. ルテイン / lutein
  4. 製薬外資、日本へ攻勢 高齢化で膨らむ市場
  5. 有機触媒によるトリフルオロボレート塩の不斉共役付加
  6. 2011年文化功労者「クロスカップリング反応の開拓者」玉尾皓平氏
  7. 三井化学が進める異業種との協業
  8. LSD1阻害をトリガーとした二重機能型抗がん剤の開発
  9. 君はホンモノの潤滑油を知っているか?:自己PRで潤滑油であることをアピールする前に中身や仕組みを知っておこう
  10. 最強の文献管理ソフトはこれだ!

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年12月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

小型でも妥協なし!幅広い化合物をサチレーションフリーのELSDで検出

UV吸収のない化合物を精製する際、一定量でフラクションをすべて収集し、TLCで呈色試…

第48回ケムステVシンポ「ペプチド創薬のフロントランナーズ」を開催します!

いよいよ本年もあと僅かとなって参りましたが、皆様いかがお過ごしでしょうか。冬…

3つのラジカルを自由自在!アルケンのアリール–アルキル化反応

アルケンの位置選択的なアリール–アルキル化反応が報告された。ラジカルソーティングを用いた三種類のラジ…

【日産化学 26卒/Zoomウェビナー配信!】START your ChemiSTORY あなたの化学をさがす 研究職限定 キャリアマッチングLIVE

3日間で10領域の研究職社員がプレゼンテーション!日産化学の全研究領域を公開する、研…

ミトコンドリア内タンパク質を分解する標的タンパク質分解技術「mitoTPD」の開発

第 631 回のスポットライトリサーチは、東北大学大学院 生命科学研究科 修士課程2…

永木愛一郎 Aiichiro Nagaki

永木愛一郎(1973年1月23日-)は、日本の化学者である。現在北海道大学大学院理学研究院化学部…

11/16(土)Zoom開催 【10:30~博士課程×女性のキャリア】 【14:00~富士フイルム・レゾナック 女子学生のためのセミナー】

化学系の就職活動を支援する『化学系学生のための就活』からのご案内です。11/16…

KISTEC教育講座『中間水コンセプトによるバイオ・医療材料開発』 ~水・生体環境下で優れた機能を発揮させるための材料・表面・デバイス設計~

 開講期間 令和6年12月10日(火)、11日(水)詳細・お申し込みはこちら2 コースの…

【太陽ホールディングス】新卒採用情報(2026卒)

■■求める人物像■■「大きな志と好奇心を持ちまだ見ぬ価値造像のために前進できる人…

産総研の研究室見学に行ってきました!~採用情報や研究の現場について~

こんにちは,熊葛です.先日,産総研 生命工学領域の開催する研究室見学に行ってきました!本記事では,産…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP