[スポンサーリンク]

化学者のつぶやき

NCL用ペプチド合成を簡便化する「MEGAリンカー法」

[スポンサーリンク]

ワシントン大学・Champak Chatterjeeらは、独自開発した固相担持ユニット「MEGAリンカー」を用いることで、Fmoc法で固相合成したペプチドをチオエステルへと変換できる手法を開発した。生成物はNative Chemical Ligation (NCL)によってフラグメントカップリング・大環状化へと繋げることが可能である。

“A Facile N-Mercaptoethoxyglycinamide (MEGA) Linker Approach to Peptide Thioesterification and Cyclization”
Shelton, P. M. M.; Weller, C. E.; Chatterjee, C.* J. Am. Chem. Soc. 2017, 139, 3946–3949. DOI: 10.1021/jacs.6b13271

問題題設定と解決した点

 巨大ペプチドを合成する際には、NCL法によるフラグメントカップリングが有効である。そのためにはC末端チオエステルの調製が必要となるが、その合成をFmoc固相合成法で行おうとすると、Fmoc除去に用いられるピペリジンがチオエステルを攻撃してしまい、上手く合成できない。

 この理由からペプチドチオエステル合成にはBoc固相合成法が活用されてきたが、リン酸化・グリコシル化されたペプチドには用いることができない、レジンからの切り離しに強い条件(HF)必要となるなど、制限も多い。
 この問題を著者らは、N-mercaptoethoxyglycinamide(MEGA)リンカーをデザインすることによって解決した。すなわち、Fmoc固相合成法でのチオエステル合成を可能にした報告と考えて差し支えないと思われる。

技術と手法の肝

 NCL法を用いて合成した2-(aminooxy)ethanethiol含有ペプチドが、温和な条件下、元のチオエステルに徐々に戻ることを発見したことから着想を得ている。これはN-to-Sアシル転位プロセスを経て進行していると考えられる(冒頭図)。

 MEGAリンカーのN-O結合は安定であり、隣接するカルボニルも求電子性が低いため、ピペリジンのFmoc脱保護条件にも安定に存在しうる。

主張の有効性検証

①MEGAリンカーを含むペプチド合成

 テトラペプチドの合成で一般性を評価している。C末端アミノ酸が何であろうと、レジンからの切り離し過程までは、単離収率が30~50%程度で進行する。

基質一般性の抜粋

 続くMESNaを用いるチオエステル化は、48~72hの長時間と50~70℃を要するが、弱酸性(pH 4-6)の温和な条件下で30~70%ほどの収率で進行する。エピ化しやすいCysと結合したMEGAペプチドでも、エピ化は起こらない。

 巨大なペプチドへも適用可能である。35残基のMEGAペプチドを22%収率で単離し、75%の収率でチオエステルへと変換できている。

②NCLへの適用

 テトラペプチド同士のカップリングで確認している。単離したMEGAペプチドをpH5付近でチオエステルに変換し(24~72 h)、そのままpH7.5でNCL条件にかけると(1 h)オクタペプチドが得られる。

 また、N末端無保護Cys含有のMEGAペプチドは容易に環化させることができる。CASHEW-MEGAペプチドを合成し(単離収率56%)、チオエステル化の条件に附すとと8時間以内に環化が進行する。別のCLASH-MEGAペプチドを用いた環化検討により、エピ化率は2%未満であることが分かっている。

 本方法論を用いてSunflower Trypsin Inhibitor-1 (STF-1)I10G変異体のワンポット合成を下記の通り行っている。

議論すべき点

  • N末端Cysが含まれるペプチドなら、ほとんど大環状化に適用可能。Cysは脱硫でAlaになるので、単純アミノ酸素子からなる環状ペプチドならほとんど全種類合成可能か。
  • チオエステルに変換する際、末端のアミノ酸の影響はややある。β-branchのValなどは立体の影響が大きく、チオエステル変換時には72時間かけても26%しか進行しない。
  • C末端がAspの場合、チオエステル合成条件にかけるとMEGAが分解してただのペプチドに戻ってしまう。どうやら分子内での無水物形成後に加水分解しているようである。
  • エピ化の抑制は課題。ヒスチジンで2%程度のエピ化率なら、バリンなら6~10%はエピ化するか。
  • 用いている配列には特に意味はないようで、語呂合わせして遊んでいるだけのようだ。TOCにはCASHEW配列を環化させている図とカシューナッツの絵が書いてある(笑)

冒頭論文TOC

次に読むべき論文は?

  • 類似コンセプトの競合研究、特に大高らのSEAlideペプチド[1]・SEAoxyペプチド[2]は比較して読む価値がある。

参考文献

  1. Tsuda, S.; Shigenaga, A.; Bando, K.; Otaka, A. Org. Lett. 2009, 11, 823. DOI: 10.1021/ol8028093
  2. Tsuda, S.; Mochizuki, M.; Sakamoto, K.; Denda, M.; Nishio, H.; Otaka, A.; Yoshiya, T. Org. Lett. 2016, 18, 5940. DOI: 10.1021/acs.orglett.6b03055

 

The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 紹介会社を使った就活
  2. シュプリンガー・ジャパン:生化学会書籍展示ケムステ特典!
  3. 文具に凝るといふことを化学者もしてみむとてするなり⑩:メクボール…
  4. 大学院生のつぶやき:研究助成の採択率を考える
  5. 落葉の化学~「コロ助の科学質問箱」に捧ぐ
  6. ヘテロベンザイン
  7. Gilbert Stork最後の?論文
  8. エステルからエーテルをつくる脱一酸化炭素金属触媒

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. バトフェナントロリン:Bathophenanthroline
  2. プリリツェフ エポキシ化 Prilezhaev Epoxidation
  3. 2017年の注目分子はどれ?
  4. オッペナウアー酸化 Oppenauer Oxidation
  5. 2007年度ノーベル化学賞を予想!(4)
  6. ディーン・タンティロ Dean J. Tantillo
  7. 専門用語(科学英単語)の発音
  8. マグネシウム Magnesium-にがりの成分から軽量化合物材料まで
  9. Dead Endを回避せよ!「全合成・極限からの一手」②
  10. REACH/RoHS関連法案の最新動向【終了】

関連商品

注目情報

注目情報

最新記事

有機合成化学協会誌2019年11月号:英文版特集号

有機合成化学協会が発行する有機合成化学協会誌、2019年11月号がオンライン公開されました。…

製品開発職を検討する上でおさえたい3つのポイント

基礎研究と製品開発は、目的や役割がそれぞれ異なります。しかし、求人情報の応募要件を見てみると「〇〇の…

二刀流のホスフィン触媒によるアトロプ選択的合成法

不斉付加環化反応による新奇アリールナフトキノン合成法が報告された。2つの機能を有する不斉ホスフィン触…

ヒドロゲルの新たな力学強度・温度応答性制御法

第230回のスポットライトリサーチは、東京農工大学大学院工学府(村岡研究室)・石田敦也さんにお願い致…

光誘導アシルラジカルのミニスキ型ヒドロキシアルキル化反応

可視光照射条件下でのアジン類のミニスキ型ヒドロキシアルキル化反応が開発された。官能基許容性が高いため…

イオン交換が分子間電荷移動を駆動する協奏的現象の発見

第229回のスポットライトリサーチは、東京大学大学院 新領域創成科学研究科(竹谷・岡本研究室)・山下…

Chem-Station Twitter

PAGE TOP