[スポンサーリンク]

化学者のつぶやき

NCL用ペプチド合成を簡便化する「MEGAリンカー法」

ワシントン大学・Champak Chatterjeeらは、独自開発した固相担持ユニット「MEGAリンカー」を用いることで、Fmoc法で固相合成したペプチドをチオエステルへと変換できる手法を開発した。生成物はNative Chemical Ligation (NCL)によってフラグメントカップリング・大環状化へと繋げることが可能である。

“A Facile N-Mercaptoethoxyglycinamide (MEGA) Linker Approach to Peptide Thioesterification and Cyclization”
Shelton, P. M. M.; Weller, C. E.; Chatterjee, C.* J. Am. Chem. Soc. 2017, 139, 3946–3949. DOI: 10.1021/jacs.6b13271

問題題設定と解決した点

 巨大ペプチドを合成する際には、NCL法によるフラグメントカップリングが有効である。そのためにはC末端チオエステルの調製が必要となるが、その合成をFmoc固相合成法で行おうとすると、Fmoc除去に用いられるピペリジンがチオエステルを攻撃してしまい、上手く合成できない。

 この理由からペプチドチオエステル合成にはBoc固相合成法が活用されてきたが、リン酸化・グリコシル化されたペプチドには用いることができない、レジンからの切り離しに強い条件(HF)必要となるなど、制限も多い。
 この問題を著者らは、N-mercaptoethoxyglycinamide(MEGA)リンカーをデザインすることによって解決した。すなわち、Fmoc固相合成法でのチオエステル合成を可能にした報告と考えて差し支えないと思われる。

技術と手法の肝

 NCL法を用いて合成した2-(aminooxy)ethanethiol含有ペプチドが、温和な条件下、元のチオエステルに徐々に戻ることを発見したことから着想を得ている。これはN-to-Sアシル転位プロセスを経て進行していると考えられる(冒頭図)。

 MEGAリンカーのN-O結合は安定であり、隣接するカルボニルも求電子性が低いため、ピペリジンのFmoc脱保護条件にも安定に存在しうる。

主張の有効性検証

①MEGAリンカーを含むペプチド合成

 テトラペプチドの合成で一般性を評価している。C末端アミノ酸が何であろうと、レジンからの切り離し過程までは、単離収率が30~50%程度で進行する。

基質一般性の抜粋

 続くMESNaを用いるチオエステル化は、48~72hの長時間と50~70℃を要するが、弱酸性(pH 4-6)の温和な条件下で30~70%ほどの収率で進行する。エピ化しやすいCysと結合したMEGAペプチドでも、エピ化は起こらない。

 巨大なペプチドへも適用可能である。35残基のMEGAペプチドを22%収率で単離し、75%の収率でチオエステルへと変換できている。

②NCLへの適用

 テトラペプチド同士のカップリングで確認している。単離したMEGAペプチドをpH5付近でチオエステルに変換し(24~72 h)、そのままpH7.5でNCL条件にかけると(1 h)オクタペプチドが得られる。

 また、N末端無保護Cys含有のMEGAペプチドは容易に環化させることができる。CASHEW-MEGAペプチドを合成し(単離収率56%)、チオエステル化の条件に附すとと8時間以内に環化が進行する。別のCLASH-MEGAペプチドを用いた環化検討により、エピ化率は2%未満であることが分かっている。

 本方法論を用いてSunflower Trypsin Inhibitor-1 (STF-1)I10G変異体のワンポット合成を下記の通り行っている。

議論すべき点

  • N末端Cysが含まれるペプチドなら、ほとんど大環状化に適用可能。Cysは脱硫でAlaになるので、単純アミノ酸素子からなる環状ペプチドならほとんど全種類合成可能か。
  • チオエステルに変換する際、末端のアミノ酸の影響はややある。β-branchのValなどは立体の影響が大きく、チオエステル変換時には72時間かけても26%しか進行しない。
  • C末端がAspの場合、チオエステル合成条件にかけるとMEGAが分解してただのペプチドに戻ってしまう。どうやら分子内での無水物形成後に加水分解しているようである。
  • エピ化の抑制は課題。ヒスチジンで2%程度のエピ化率なら、バリンなら6~10%はエピ化するか。
  • 用いている配列には特に意味はないようで、語呂合わせして遊んでいるだけのようだ。TOCにはCASHEW配列を環化させている図とカシューナッツの絵が書いてある(笑)

冒頭論文TOC

次に読むべき論文は?

  • 類似コンセプトの競合研究、特に大高らのSEAlideペプチド[1]・SEAoxyペプチド[2]は比較して読む価値がある。

参考文献

  1. Tsuda, S.; Shigenaga, A.; Bando, K.; Otaka, A. Org. Lett. 2009, 11, 823. DOI: 10.1021/ol8028093
  2. Tsuda, S.; Mochizuki, M.; Sakamoto, K.; Denda, M.; Nishio, H.; Otaka, A.; Yoshiya, T. Org. Lett. 2016, 18, 5940. DOI: 10.1021/acs.orglett.6b03055

 

The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. OMCOS19に参加しよう!
  2. アジサイには毒がある
  3. なんだこの黒さは!光触媒効率改善に向け「進撃のチタン」
  4. 【追悼企画】鋭才有機合成化学者ーProf. David Gin
  5. 3Dプリンタとシェールガスとポリ乳酸と
  6. 計算化学者は見下されているのか? Part 1
  7. 地球外生命体を化学する
  8. とあるカレイラの天然物〜Pallambins〜

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 1つの蛍光分子から4色の発光マイクロ球体をつくる
  2. “Wakati Project” 低コストで農作物を保存する技術とは
  3. イミンを求核剤として反応させる触媒反応
  4. 地域の光る化学企業たち-1
  5. ブロモジメチルスルホニウムブロミド:Bromodimethylsulfonium Bromide
  6. F. S. Kipping賞―受賞者一覧
  7. PACIFICHEM2010に参加してきました!④
  8. カルタミン
  9. 第32回「生きている動物内で生理活性分子を合成して治療する」田中克典 准主任研究員
  10. リアル『ドライ・ライト』? ナノチューブを用いた新しい蓄熱分子の設計-前編

関連商品

注目情報

注目情報

最新記事

エリック・アレクサニアン Eric J. Alexanian

エリック・J・アレクサニアン(Eric J. Alexanian、19xx年x月x日-)は、アメリカ…

光C-Hザンチル化を起点とするLate-Stage変換法

2016年、ノースカロライナ大学チャペルヒル校・Eric J. Alexanianらは、青色光照射下…

硤合 憲三 Kenso Soai

硤合 憲三 (そあい けんそう、1950年x月x日-)は、日本の有機化学者である。東京理科大学 名誉…

カルボン酸からハロゲン化合物を不斉合成する

第119回のスポットライトリサーチは、豊橋技術科学大学大学院 柴富研究室 博士後期課程1年の北原 一…

アンドリュー・ハミルトン Andrew D. Hamilton

アンドリュー・ディヴィッド・ハミルトン (Andrew David Hamilton、1952年11…

耐薬品性デジタルマノメーター:バキューブランド VACUU・VIEW

突然ですが、「バキューブランド」って会社知っていますか?合成化学系の先生方はご存知の人が多い…

Chem-Station Twitter

PAGE TOP