[スポンサーリンク]

化学者のつぶやき

ペプチド縮合を加速する生体模倣型有機触媒

[スポンサーリンク]

2019年、ニューヨーク大学のParamjit S. Aroraらは、活性アシル中間体への求核付加遷移状態を安定化させる生体機構を参考に、ペプチド縮合を加速する生体模倣型有機触媒を開発した。

“Rational Design of an Organocatalyst for Peptide Bond Formation”
Handoko, Satishkumar, S.; Panigrahi, N. R.; Arora, P. S.* J. Am. Chem. Soc. 2019, 141, 15977-15985. doi:10.1021/jacs.9b07742

問題設定

ペプチド合成法として汎用される固相合成法は、1残基のペプチド鎖伸長に3~5当量の試薬を必要とする無駄の多い合成法である。そのため、カルボン酸を触媒的に活性化することによるアミド形成反応が必要とされている。カルボン酸エステル[1]や、その他非典型的な基質を用いた触媒的アミド形成[2]は今までに複数報告されているが、慣習的なペプチド合成に大きな影響を与えるには既存法のマイナーチェンジであることが重要である。

その仮説の元、著者らはペプチド固相合成に用いられるFmocアミノ酸を基質としたペプチド合成法の開発を目標とし、以下3点に基づいた触媒設計を行った。

  1. アミド形成反応において生じるテトラへドラル中間体は、生体内では酵素のオキシアニオンホールにより安定化される。
  2. 非リボソームペプチド合成では、カルボン酸はチオエステルとして活性化されることが多い。
  3. チオエステルは、ジスルフィドや三価のリン試薬から容易に調整できる[4]。

技術と手法の肝

触媒1は、著者らが2017年に報告したチオエステルからのアミド形成触媒であり、無触媒条件に比べて反応を1万倍加速する[3]。触媒中のチオールはチオール-チオエステル交換を起こし、触媒-チオエステル複合体を形成する。チオエステル複合体へのアミン求核付加によって生じるテトラへドラル中間体は、触媒のウレア部位によって安定化される。両者が最適な位置関係になるように、分子モデリングから構造最適化がなされている。三級アミンは塩基として働く。
今回の報告では、チオールより求核能・脱離能の高いセレノールを導入することで活性向上を期待している。

主張の有効性検証

①触媒構造の最適化

ジスルフィドと3価リンを用いてチオエステル合成を行う向山らの報告[4]に基づき、触媒1をジスルフィド化した1-Sとトリブチルホスフィン、基質としてp-トルイル酸とベンジルアミン(2当量)を用いて、アミド形成の検討を行った。

触媒1-Sを5mol%、トリブチルホスフィンを1.5当量加え、アセトニトリル溶媒中にて室温で反応を行ったところ、20分後に9%、4時間後に65%のアミド生成物を得た。触媒1-Sの硫黄をセレンへ置換した触媒1-Seを用いたところ、さらに反応性が改善し、20分後に36%のアミド生成物を得た。しかし1-Seを用いた場合、20~30分後以降の反応進行が遅くなるという問題があった。

セレノールからジセレニドへの酸化過程が遅いことがこの原因であると考え、触媒1-Seをリンカーで繋ぎ、ジセレニド形成過程を分子内反応化した触媒3a~3cを設計した。すると、触媒3aを用いた場合にもっとも高収率となり、70%前後まで収率が改善した。

②反応条件の最適化
  • リン

トリブチルホスフィンの酸化が反応効率に影響すると考え、酸化に安定なホスフィンを検討したが、反応は低収率にとどまった。トリブチルホスフィンと似た電気的性質を持つトリイソブチルホスフィンは似たような収率を示した。また、トリブチルホスフィンと似た立体的性質を持つP(OPh)3を用いたところ、反応は遅く、2時間で20%収率でしか目的のアミドは得られなかった。

これらの結果から、ターンオーバーにはリンの電気的性質が影響していると考えられる。立体障害の少ないホスフィンを用いることで改善できる可能性はあるが、同時に試薬がair sensitiveになってしまうため、トリブチルホスフィンを最適なリン試薬とした。

  • 溶媒

アセトニトリル、DMFどちらを用いた場合でも収率はほぼ変わらなかったが、DMFを用いた場合、反応速度は低下した。ウレアの水素結合と競合するためだと考えられる。

  • 脱水剤

用いる脱水剤により収率は大きく変化する。MS4Aが最もよい結果を示した。

  • ホスフィンの加え方

ホスフィンが酸化されるために過剰のホスフィンを用いる必要がある。3当量のホスフィンを用いると、99%収率で目的のアミドが得られた。一方、0.5当量ずつ加えると、1.5当量のホスフィンを加えたときに99%収率で目的のアミドが得られた。

③ 基質一般性

下記の条件にて基質一般性の評価を行っている。N末、C末のアミノ酸を様々に変えても目的のジペプチドは高収率で得られた。エピメリ化はAla-Alaで1%未満、Val-Alaで1%、Phe-Proで2%程度であった。

④ 固相合成法への応用

Fmocアミノ酸を1.1当量、触媒3aを5mol%用い、固相合成法でFmoc-FEKAG-NH2の合成を行っている。レジンからペプチド鎖を切り離しHPLCで純度を確認したところ、HBTU法で同じペプチドを合成した時と同程度の純度であることが確認された。

⑤ 反応機構解析・触媒サイクルの提唱

下記の実験事実に基づき、図の様な触媒サイクルを提唱している。脱離したセレニド(V)は空気中の酸素によって酸化され、触媒3aが再生する。この過程で生成する水はモレキュラーシーブによって捕捉される。律速過程は、セレン触媒の再酸化であると考えられる。

  1. [3a]は1次で反応速度に比例する。この実験事実から3aは1分子のみ反応に寄与していることが示唆された。
  2. カルボン酸が低濃度の場合、[カルボン酸]は1次で反応速度に比例する。高濃度の場合には飽和が見られることから、セレノエステル形成以降のステップが律速段階であると予想される。
  3. [アミン]は反応速度に0次で寄与する。すなわち、セレノエステルへのアミンの求核攻撃は十分に速い。Seの高い求核性と、PyBoPの反応機構から類推し、セレノエステルがアミド形成の中間体であると予想される。
  4. 溶媒をアセトニトリルからDMFへと変更すると反応速度が低下することから、ウレアによる水素結合が反応を加速していると考えられる。
  5. [Bu3P]は-0.5次で反応速度に比例する。セレン触媒の還元以外にも、触媒の再酸化阻害(赤)に関わっている可能性がある。

図は冒頭論文より引用

議論すべき点

  • それほど難しい基質は用いられていない印象。設計上、反応中心が込み入ってくるので、立体的に嵩高い部位での縮合は難しいのかも知れない。
  • アセトニトリル中で固相合成を行っているが、より長鎖ペプチドとなった場合に溶解性が問題になる。DMFでも反応は進行するが、遅い。
  • ジペプチド合成ではエピメリ化するため、純度を高めることを考えるならば配列を選ぶ必要がありそう。

参考文献

  1. Muramatsu, W.; Hattori, T.; Yamamoto, H. J. Am. Chem. Soc. 2019, 141, 12288. doi:10.1021/jacs.9b03850
  2. Nilsson, B. L.; Kiessling, L. L.; Raines, R. T. Org. Lett. 2000, 2, 1939. doi:10.1021/ol0060174
  3. Wu, H.; Handoko, Raj, M.; Arora, P. S. Org. Lett. 2017, 19, 5122. doi:10.1021/acs.orglett.7b02412
  4. Endo, T.; Ikenaga, S.; Mukaiyama, T. Bull. Chem. Soc. Jpn. 1970, 43, 2632. doi:10.1246/bcsj.43.2632
Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. アスタチンを薬に使う!?
  2. 特許情報から読み解く大手化学メーカーの比較
  3. 変わったガラス器具達
  4. 汝ペーハーと読むなかれ
  5. 金属から出る光の色を利用し、食中毒の原因菌を迅速かつ同時に識別す…
  6. 高校教科書に研究が載ったはなし
  7. 【太陽HD】新卒採用情報(20年卒)
  8. 植物毒素の全合成と細胞死におけるオルガネラの現象発見

注目情報

ピックアップ記事

  1. 新コンテンツ「ケムステまとめ」をオープン
  2. 細胞の分子生物学/Molecular Biology of the Cell
  3. 有機機能性色素におけるマテリアルズ・インフォマティクスの活用とは?
  4. 第33回「セレンディピティを計画的に創出する」合田圭介 教授
  5. 安定なケトンのケイ素類縁体“シラノン”の合成 ケイ素—酸素2重結合の構造と性質
  6. ピセン:Picene
  7. JSRとはどんな会社?-2
  8. 井口 洋夫 Hiroo Inokuchi
  9. 原子状炭素等価体を利用してα,β-不飽和アミドに一炭素挿入する新反応
  10. 元素ネイルワークショップー元素ネイルってなに?

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年1月
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

最新記事

2024年度 第24回グリーン・サステイナブル ケミストリー賞 候補業績 募集のご案内

公益社団法人 新化学技術推進協会 グリーン・サステイナブル ケミストリー ネットワーク会議(略称: …

ペロブスカイト太陽電池開発におけるマテリアルズ・インフォマティクスの活用

開催日時 2024.09.11 15:00-16:00 申込みはこちら開催概要持続可能な…

第18回 Student Grant Award 募集のご案内

公益社団法人 新化学技術推進協会 グリーン・サステイナブルケミストリーネットワーク会議(略称:JAC…

杉安和憲 SUGIYASU Kazunori

杉安和憲(SUGIYASU Kazunori, 1977年10月4日〜)は、超分…

化学コミュニケーション賞2024、候補者募集中!

化学コミュニケーション賞は、日本化学連合が2011年に設立した賞です。「化学・化学技術」に対する社会…

相良剛光 SAGARA Yoshimitsu

相良剛光(Yoshimitsu Sagara, 1981年-)は、光機能性超分子…

光化学と私たちの生活そして未来技術へ

はじめに光化学は、エネルギー的に安定な基底状態から不安定な光励起状態への光吸収か…

「可視光アンテナ配位子」でサマリウム還元剤を触媒化

第626回のスポットライトリサーチは、千葉大学国際高等研究基幹・大学院薬学研究院(根本研究室)・栗原…

平井健二 HIRAI Kenji

平井 健二(ひらい けんじ)は、日本の化学者である。専門は、材料化学、光科学。2017年より…

Cu(I) の構造制御による π 逆供与の調節【低圧室温水素貯蔵への一歩】

2024年 Long らは、金属有機構造体中の配位不飽和な三配位銅(I)イオンの幾何構造を系統的に調…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP