[スポンサーリンク]

一般的な話題

次世代の二次元物質 遷移金属ダイカルコゲナイド

[スポンサーリンク]

ムーアの法則の限界と二次元半導体

現代の半導体デバイス産業では、作製時の低コスト化や動作速度向上、高機能化に向けた微細化・集積化が進んでいる。中でも、半導体の表面に微細な電子回路を形成した集積回路では、回路上に搭載するトランジスタの数が増えるほど計算能力の向上が見込める。集積回路の微細化は、集積回路当たりのトランジスタの数が毎年2倍になるというムーアの法則[1]に従って発展してきた。しかし、三次元半導体のSiを使用したトランジスタを今以上に小さくすることは限界を迎えつつある。その原因は、Siを微細化しすぎることで界面が不安定になり、物性が消失するためである。その問題の突破口となる新たな材料の候補として、二次元材料が挙げられる。

代表的な二次元材料にグラフェンがあげられる。これは、炭素原子のみで構成された二次元物質である。グラフェンはπ軌道とπ*軌道が互いに重なっておらず、価電子帯の上端と伝導帯の下端が6つの点(Dirac point)でのみ接触したDirac cone構造という特殊なバンド構造を持つ(図1)。このため、グラフェンはゼロギャップ半導体とも呼ばれ、種々の興味深い性質を示すが、一方でグラフェンはそのままでは二次元半導体として用いることはできず、ドーピングやイオン注入などで欠陥を作製する必要がある。また、作成時のコストが非常に大きいという問題がある。

 

図1 グラフェンのフェルミ面[2]

次世代の二次元物質 遷移金属ダイカルコゲナイド

グラフェンに替わる二次元物質として、遷移金属ダイカルコゲナイド(Transition Metal Dichalcogenide, TMDC)に注目が集まっている。この物質は一層の遷移金属層をカルコゲン原子層がサンドイッチした構造をとっている。TMDCの一種であるMoSe2の単層構造を図2に示す。

図2 単層MoSe2の結晶構造

 

TMDCの物性は様々で、組成や結晶構造によって金属、半金属、半導体、絶縁体など多岐にわたる。TMDCの特徴的な点として層数によって物性が変化する層数依存性がある。TMDCの一種であるMoS2やMoSe2では、単層になると電子遷移が間接遷移から直接遷移に変化する(図3)。

図3 MoS2のバンドギャップの遷移[3]

量子ビットへの応用

TMDCを構成する遷移金属は強いスピン軌道相互作用を持っている。また、図2のようなハニカム構造を持つTMDCでは、バンド端で2つのエネルギーバンドが縮退している。このバンドは谷(Valley) 型の構造をとるため、この構造をバレーと呼び、この縮退をバレー縮退と呼ぶ。それぞれのバレーには異なる運動量を持った電子が入り、強いスピン軌道相互作用の影響により左右の円偏光で選択的に励起することができる(図4)。このことから、バレーは新たな量子自由度として用いることができる。この自由度はバレー自由度と呼ばれ、バレー自由度を用いて情報処理を行うエレクトロニクスをバレートロニクスと呼ぶ。現代の量子ビットは極低温下での利用が一般的であり、巨大な冷却装置を必要とする点が問題であったが、TMDCのバレー自由度を利用することで、室温かつ小型な量子コンピュータの開発が見込まれる。

図4 MoS2のバレー構造[4]

 

参考文献

[1] MIT Csail Alliances.  https://cap.csail.mit.edu/death-moores-law-what-it-means-and-what-might-fill-gap-going-forward

[2] Tsuneya A., The electronic properties of graphene and carbon nanotubes. NPG Asia Mater., 2009, 1(1), 17-21. DOI: 10.1038/10.1038/asiamat.2009.1

[3] Splendiani. A; Liang S.; Yuanbo Z.; Tianshu L.; Jonghwan K.; Chi-Yung C.; Giulia G.; Feng W. Emerging Photoluminescence in Monolayer MoS2. Nano Lett. 2010, 10(4), 1271-1275, DOI: 10.1021/nl903868w

[4] Di X.; Gui-Bin L.; Wanxiang F.; Xiaodong X.; Wang Y. Coupled Spin and Valley Physics in Monolayers of MoS2 and Other Group-VI Dichalcogenides, PRL, 2012, 108(19), 196802, DOI: 10.1103/PhysRevLett.108.196802  

植木 穂香

投稿者の記事一覧

奈良先端大のD1です。ポラリトンについて研究しています。

関連記事

  1. 酸窒化物合成の最前線:低温合成法の開発
  2. マテリアルズ・インフォマティクスに欠かせないデータ整理の進め方と…
  3. 大学院から始めるストレスマネジメント【アメリカで Ph.D. を…
  4. 【日産化学】新卒採用情報(2026卒)
  5. 二刀流センサーで細胞を光らせろ!― 合成分子でタンパク質の蛍光を…
  6. 「医薬品クライシス」を読みました。
  7. 高分子材料におけるマテリアルズ・インフォマティクスの活用:高分子…
  8. 室温で緑色発光するp型/n型新半導体を独自の化学設計指針をもとに…

注目情報

ピックアップ記事

  1. 国内最大級の研究者向けDeepTech Company Creation Program「BRAVE FRONTIER」 2022年度の受付開始 (7/15 〆切)
  2. π-アリルイリジウムに新たな光を
  3. CAS Future Leaders Program 2022 参加者インタビュー
  4. 渡辺芳人 Yoshihito Watanabe
  5. 東京化成工業がケムステVシンポに協賛しました
  6. “アルデヒドを移し替える”新しいオレフィン合成法
  7. 軽量・透明・断熱!エアロゲル(aerogel)を身近に
  8. 化学を広く伝えるためにー多分野融合の可能性ー
  9. 高分子の合成(上)(下)
  10. 実験化学のピアレビューブログ: Blog Syn

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2025年4月
 123456
78910111213
14151617181920
21222324252627
282930  

注目情報

最新記事

【産総研・触媒化学研究部門】新卒・既卒採用情報

触媒部門では、「個の力」でもある触媒化学を基盤としつつも、異分野に積極的に関わる…

触媒化学を基盤に展開される広範な研究

前回の記事でご紹介したとおり、触媒化学研究部門(触媒部門)では、触媒化学を基盤に…

「産総研・触媒化学研究部門」ってどんな研究所?

触媒化学融合研究センターの後継として、2025年に産総研内に設立された触媒化学研究部門は、「触媒化学…

Cell Press “Chem” 編集者 × 研究者トークセッション ~日本発のハイクオリティな化学研究を世界に~

ケムステでも以前取り上げた、Cell PressのChem。今回はChemの編集…

光励起で芳香族性を獲得する分子の構造ダイナミクスを解明!

第 654 回のスポットライトリサーチは、分子科学研究所 協奏分子システム研究セ…

藤多哲朗 Tetsuro Fujita

藤多 哲朗(ふじた てつろう、1931年1月4日 - 2017年1月1日)は日本の薬学者・天然物化学…

MI conference 2025開催のお知らせ

開催概要昨年エントリー1,400名超!MIに特化したカンファレンスを今年も開催近年、研究開発…

【ユシロ】新卒採用情報(2026卒)

ユシロは、創業以来80年間、“油”で「ものづくり」と「人々の暮らし」を支え続けている化学メーカーです…

Host-Guest相互作用を利用した世界初の自己修復材料”WIZARDシリーズ”

昨今、脱炭素社会への実現に向け、石油原料を主に使用している樹脂に対し、メンテナンス性の軽減や材料の長…

有機合成化学協会誌2025年4月号:リングサイズ発散・プベルル酸・イナミド・第5族遷移金属アルキリデン錯体・強発光性白金錯体

有機合成化学協会が発行する有機合成化学協会誌、2025年4月号がオンラインで公開されています!…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP