[スポンサーリンク]

化学者のつぶやき

3級C-H結合選択的な触媒的不斉カルベン挿入反応

[スポンサーリンク]

2017年、エモリー大学・Huw M. L. Daviesらは独自に設計した不斉二核ロジウム触媒を用い、3級C-H結合選択的かつ立体選択的に進行するカルベン挿入反応の開発に成功した。

”Site-selective and stereoselective functionalization of non-activated tertiary C-H bonds”
Liao, K.; Pickel, T. C.; Boyarskikh, V.; Becsa, J.; Musav, D. G.; Davies, H. M. L.* Nature 2017, 551, 609–613. doi:10.1038/nature24641

問題設定

不活性なC-H結合の直接的変換は近年盛んに研究が行われており、著しい進歩を遂げてきた。しかし位置選択性の制御は難しく、主には(1)配向基を備える基質 (2) 分子内に高反応性のC-H結合がある基質 (3) 特定のC-H結合だけが優先的に分子内反応するような基質 を対象としている結果、基質依存の手法になっている。

技術や手法の肝

Daviesらは2016年、最も立体的に空いた2級メチレンC-H結合の位置及び立体選択的修飾反応を報告した[1]が、続報としての本論文では3級C-H結合の立体選択的修飾反応を達成した(冒頭図)。これら二つの報告では、触媒依存で反応点を変えることができる。さらにアリル位C-Hやベンジル位C-Hを持つ化合物においても3級C-Hへの位置選択的・立体選択的修飾が行えるため、Late-Stage官能基化への応用が期待できる。

主張の有効性の検証

①触媒のスクリーニングと反応条件の最適化

2-メチルペンタンに対するα-アリール-ジアゾエステルのC-H挿入反応の選択性を様々なロジウム触媒を用いて評価した。下記の通り触媒種によって大きな差が出るが、テトラクロロフタルイミド由来の触媒使用により顕著に改善され、Rh2[S-TCPTAD]4触媒を用いたときに高選択的に3級炭素で反応が進行しそのエナンチオ選択性も良好だった(79% ee)。さらなる検討の結果、反応剤をトリフルオロエチルエステルに変え、低温にて反応を行うことで96:4の位置選択性・86%eeまで向上した。


②基質一般性の評価

官能基の持たない鎖状アルカンにおいては3級C-Hにおいて高収率・高エナンチオ選択性(77%-92%)にて反応が進行した。しかし、混みあった3級C-Hでは反応が進行しづらく、空いた2級C-Hでの反応が優先された(2列目左端の基質)。

ブロモ基やエステルを持つ基質においても高収率で反応が進行し、ジアゾエステル側の芳香環部位も、ヘテロサイクルやトリフルオロメチル、メトキシを持つものに変更可能であった。

またcholesteryl pelargonateに対して、既報触媒を用いて位置選択性の違いを確認したところ、期待通りRh2[R-3,5-di(ptBuC6H4)TPCP]4では立体的に空いた2級C-H結合に、Rh2[R-TCPTAD]4では最も空いた3級C-H結合にて反応が進行した。

③選択性発現の考察

テトラクロロフタルイミド型配位子はそのCl-O結合間相互作用により、全てのフタルイミドが片側に向いた形で固定化されていることがCharetteらによって報告されており[2]、DaviesらもX線結晶構造解析でその姿を確認した。

またフタルイミド面では16.2Å幅のスペースがあるのに対し、アダマンタンが向いている面では7.8Å幅のスペースしかなく、ジアゾエステル(9.6Å)はフタルイミド面でのみメタルカルベン錯体を形成することが示唆された。

冒頭論文より引用

さらに計算の結果、カルベンが結合した後は一つのCl-O結合が崩れ、フタルイミド環と基質芳香環とがπ面スタックを取ることが明らかになった。π面スタックの状態では空いているRe面から反応が優先する。

 

冒頭論文より引用

このように、Rh2[R-TCPTAD]4ではカルベン周りが比較的すいているため、2級炭素ではなく電子的に有利な3級炭素にて反応が進行する。

議論すべき点

  • アリル位・ベンジル位など以外の活性化部位以外に、配向基を使わず高収率にて分子間C-C結合形成反応が進行する報告として画期的なものである。しかしながら論文中では基質検討表にアリル位やベンジル位を持つ化合物は並べられておらず、そこは基質依存になっているように見える。
  • 前回報告されたRh2[R-3,5-di(p-tBuC6H4)TPCP]4を用いる2級C-H選択的な反応では、3級C-Hとの完全な区別はまだ出来ておらず、2級C-Hだけを選択的に修飾することは未だに課題と考えられる。

参考文献

  1. Liao, K.; Negretti, S.; Musaev, D. G.; Bacsa, J.; Davies, H. M. L. Nature 2016, 533, 230. doi:10.1038/nature17651
  2. (a) Lindsay, V. N. G.; Lin, W.; Charette, A. B. J. Am. Chem. Soc. 2009, 131, 16383. DOI: 10.1021/ja9044955 (b) Goto, T.; Takeda, K.; Shimada, N.; Nambu, H.; Anada, M.; Shiro, M.; Ando, K.; Hashimoto, S. Angew. Chem. Int. Ed. 2011, 50, 6803. doi:10.1002/anie.201101905

外部リンク

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 実験条件検討・最適化特化サービス miHubのメジャーアップデー…
  2. アジサイには毒がある
  3. ポンコツ博士の海外奮闘録XVII~博士,おうちを去る~
  4. リアルタイムで分子の自己組織化を観察・操作することに成功
  5. ハッピー・ハロウィーン・リアクション
  6. サラダ油はなぜ燃えにくい? -引火点と発火点-
  7. 第9回 野依フォーラム若手育成塾
  8. 有機化学を俯瞰する –古代ギリシャ哲学から分子説の誕生まで–【前…

注目情報

ピックアップ記事

  1. 有機化合物のスペクトルデータベース SpectraBase
  2. NCL用ペプチド合成を簡便化する「MEGAリンカー法」
  3. ジピバロイルメタン:Dipivaloylmethane
  4. 三菱化学が有機太陽電池事業に参入
  5. このホウ素、まるで窒素ー酸を塩基に変えるー
  6. 穴の空いた液体
  7. カルボニルトリス(トリフェニルホスフィン)ロジウム(I)ヒドリド:Carbonyltris(triphenylphosphine)rhodium(I) Hydride
  8. イライアス・コーリー E. J. Corey
  9. 第99回―「配位子設計にもとづく研究・超分子化学」Paul Plieger教授
  10. 【書籍】10分間ミステリー

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2018年11月
 1234
567891011
12131415161718
19202122232425
2627282930  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP