[スポンサーリンク]

化学者のつぶやき

タングトリンの触媒的不斉全合成

[スポンサーリンク]

tangutorine_1.gif

Catalytic Asymmetric Total Synthesis of Tangutorine
Nemoto, T.; Yamamoto, E.; Franzen, R.; Fukuyama, T.; Wu, R.; Fukamichi, T.; Kobayashi, H.; Hamada, Y. Org. Lett. 2010 ASAP.  doi:10.1021/ol902929a

千葉大薬学部の濱田康正教授らによる合成です。タングトリンは中国産薬用植物・白刺(ハクシ、Nitraria tangutorum)  の葉から単離される細胞毒性・抗癌活性を示すアルカロイドです。

ラセミ体での全合成は報告されているものの不斉全合成は未達成であり、今回の報告では彼らが独自開発した不斉触媒反応を武器に、初の不斉全合成へとアプローチし、見事達成しています。


この多環性骨格にどうアプローチして行くか――トリプタミンが入手容易であること、C-N結合がC-C結合に比べて切りやすいことを考えると、おそらくPictet-Spengler環化を鍵とする、下記のような収束的逆合成を、即座に思いつくことでしょう。このルート設定をすれば、どのように右パートの不斉点を制御するか、ということが一つキーポイントになります。

tangutorine_2.gifこの点で彼らは、独自開発したPd-DIAPHOX触媒系[1]を用いる、Baylis-Hilmann付加体への不斉アリル位アミノ化反応[2]を武器としています。
tangutorine_3.gifDIAPHOXはアスパラギン酸から容易に大量合成される不斉配位子です。これはマスクされた形のリン配位子とみなすことができます。シリル化剤(BSA)を加えることで異性化が起こり、キラルホスフィンが系中生成してくる設計になっています。

tangutorine_4.gifリン化合物は得てして酸素に弱く、取扱い困難なものも少なくありません。一方でDIAPHOXのようなホスフィンオキシド型化合物は安定であり、特別なケアを必要とせず合成・保存可能です。もちろんメリットがある一方で、BSAなど本来なくても良いはずの試薬を過剰量加えねばなりません。試薬間干渉
によって適用範囲が狭まってしまう可能性も考慮が必要です。

ともあれ、アミン部根元の立体は、Pd-DIAPHOX触媒による不斉アミノ化反応にて制御可能です。その後すこしばかりの変換を得て、Sharpless酸化→ヒドリドによるエポキシド開環によってとなりの炭素不斉点を構築しています。

tangutorine_5.gifPictet-Spengler環化では、残念ながら立体制御に難があったようです。undesiredな異性体も迂回ルートで最終物に持っていけるとのことですが・・・ここが綺麗に決まっていれば・・・惜しいところですね。

tangutorine_6.gif全体的にトリッキーな変換は多くありませんが、基本が間違いなく押さえられたルートと見受けられました。

ところどころ官能基変換が冗長ですが、これは得てして不斉触媒適用型の全合成に見られがちなこととも思えます。
仮にですが、上記逆合成スキーム中央で示したようなものに類する化合物に対して、不斉アミノ化反応が適用できるならば、官能基変換は最小限に抑えられるように思います。

つまりは“適用基質の制限”がその根源的理由として考えうるわけですね。

この事実と合成ルートを眺めて、「ルートが汚くなりがちだから不斉触媒は使えない」とネガティブに見なしてしまうか、「このポイントを改善すればとても斬新なルートに出来る」とポジティブに捉えるか・・・このあたりは「何を目指しての全合成なのか」という、研究者のヴィジョン次第と言えそうです。

いずれにせよ、「不斉触媒にすり寄った基質デザイン」を考えなくて良いほど一般性ある実用的触媒反応というのは、今後とも開発が望まれるものの一つといえそうですね。

  • 関連文献
[1] (a) Nemoto, T.; Matsumoto, T.; Masuda, T.; Hitomi, T.; Hatano, K.; Hamada, Y. J. Am. Chem. Soc. 2004, 126, 3690. DOI: 10.1021/ja031792a (b) Nemoto, T.; Masuda, T.; Matsumoto, T.; Hamada, Y. J. Org. Chem. 2005, 70, 7172. DOI: 10.1021/jo050800y

[2] Nemoto, T.; Fukuyama, T.; Yamamoto, E.; Tamura, S.; Fukuda,
T.; Matsumoto, T.; Akimoto, Y.; Hamada, Y. Org. Lett. 2007, 9, 927. DOI: 10.1021/ol0700207

  • 関連リンク

千葉大薬学部・濱田康正研究室

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 第10回ケムステVシンポ「天然物フィロソフィ」を開催します
  2. 触媒的プロリン酸化を起点とするペプチドの誘導体化
  3. 直鎖アルカンの位置選択的かつ立体選択的なC–H結合官能基化
  4. Mestre NovaでNMRを解析してみよう
  5. 製薬系企業研究者との懇談会
  6. 【日産化学 21卒】START your chemi-story…
  7. ハウアミンAのラージスケール合成
  8. 低分子の3次元構造が簡単にわかる!MicroEDによる結晶構造解…

注目情報

ピックアップ記事

  1. 光触媒で人工光合成!二酸化炭素を効率的に資源化できる新触媒の開発
  2. 固体NMR
  3. 独バイエル、世界全体で6100人を削減へ
  4. LEGO ゲーム アプローチ
  5. アルメニア初の化学系国際学会に行ってきた!③
  6. 化合物と結合したタンパク質の熱安定性変化をプロテオームワイドに解析
  7. Carl Boschの人生 その4
  8. 塩野義製薬/米クレストール訴訟、控訴審でも勝訴
  9. 内部アルコキシ効果 Inside Alkoxy Effect
  10. 第二回ケムステVシンポジウム「光化学へようこそ!~ 分子と光が織りなす機能性材料の新展開 ~」を開催します!

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2010年2月
1234567
891011121314
15161718192021
22232425262728

注目情報

最新記事

第48回ケムステVシンポ「ペプチド創薬のフロントランナーズ」を開催します!

いよいよ本年もあと僅かとなって参りましたが、皆様いかがお過ごしでしょうか。冬…

3つのラジカルを自由自在!アルケンのアリール–アルキル化反応

アルケンの位置選択的なアリール–アルキル化反応が報告された。ラジカルソーティングを用いた三種類のラジ…

【日産化学 26卒/Zoomウェビナー配信!】START your ChemiSTORY あなたの化学をさがす 研究職限定 キャリアマッチングLIVE

3日間で10領域の研究職社員がプレゼンテーション!日産化学の全研究領域を公開する、研…

ミトコンドリア内タンパク質を分解する標的タンパク質分解技術「mitoTPD」の開発

第 631 回のスポットライトリサーチは、東北大学大学院 生命科学研究科 修士課程2…

永木愛一郎 Aiichiro Nagaki

永木愛一郎(1973年1月23日-)は、日本の化学者である。現在北海道大学大学院理学研究院化学部…

11/16(土)Zoom開催 【10:30~博士課程×女性のキャリア】 【14:00~富士フイルム・レゾナック 女子学生のためのセミナー】

化学系の就職活動を支援する『化学系学生のための就活』からのご案内です。11/16…

KISTEC教育講座『中間水コンセプトによるバイオ・医療材料開発』 ~水・生体環境下で優れた機能を発揮させるための材料・表面・デバイス設計~

 開講期間 令和6年12月10日(火)、11日(水)詳細・お申し込みはこちら2 コースの…

【太陽ホールディングス】新卒採用情報(2026卒)

■■求める人物像■■「大きな志と好奇心を持ちまだ見ぬ価値造像のために前進できる人…

産総研の研究室見学に行ってきました!~採用情報や研究の現場について~

こんにちは,熊葛です.先日,産総研 生命工学領域の開催する研究室見学に行ってきました!本記事では,産…

第47回ケムステVシンポ「マイクロフローケミストリー」を開催します!

第47回ケムステVシンポジウムの開催告知をさせて頂きます!第47回ケムステVシンポジウムは、…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP