[スポンサーリンク]

化学者のつぶやき

タングトリンの触媒的不斉全合成

[スポンサーリンク]

tangutorine_1.gif

Catalytic Asymmetric Total Synthesis of Tangutorine
Nemoto, T.; Yamamoto, E.; Franzen, R.; Fukuyama, T.; Wu, R.; Fukamichi, T.; Kobayashi, H.; Hamada, Y. Org. Lett. 2010 ASAP.  doi:10.1021/ol902929a

千葉大薬学部の濱田康正教授らによる合成です。タングトリンは中国産薬用植物・白刺(ハクシ、Nitraria tangutorum)  の葉から単離される細胞毒性・抗癌活性を示すアルカロイドです。

ラセミ体での全合成は報告されているものの不斉全合成は未達成であり、今回の報告では彼らが独自開発した不斉触媒反応を武器に、初の不斉全合成へとアプローチし、見事達成しています。


この多環性骨格にどうアプローチして行くか――トリプタミンが入手容易であること、C-N結合がC-C結合に比べて切りやすいことを考えると、おそらくPictet-Spengler環化を鍵とする、下記のような収束的逆合成を、即座に思いつくことでしょう。このルート設定をすれば、どのように右パートの不斉点を制御するか、ということが一つキーポイントになります。

tangutorine_2.gifこの点で彼らは、独自開発したPd-DIAPHOX触媒系[1]を用いる、Baylis-Hilmann付加体への不斉アリル位アミノ化反応[2]を武器としています。
tangutorine_3.gifDIAPHOXはアスパラギン酸から容易に大量合成される不斉配位子です。これはマスクされた形のリン配位子とみなすことができます。シリル化剤(BSA)を加えることで異性化が起こり、キラルホスフィンが系中生成してくる設計になっています。

tangutorine_4.gifリン化合物は得てして酸素に弱く、取扱い困難なものも少なくありません。一方でDIAPHOXのようなホスフィンオキシド型化合物は安定であり、特別なケアを必要とせず合成・保存可能です。もちろんメリットがある一方で、BSAなど本来なくても良いはずの試薬を過剰量加えねばなりません。試薬間干渉
によって適用範囲が狭まってしまう可能性も考慮が必要です。

ともあれ、アミン部根元の立体は、Pd-DIAPHOX触媒による不斉アミノ化反応にて制御可能です。その後すこしばかりの変換を得て、Sharpless酸化→ヒドリドによるエポキシド開環によってとなりの炭素不斉点を構築しています。

tangutorine_5.gifPictet-Spengler環化では、残念ながら立体制御に難があったようです。undesiredな異性体も迂回ルートで最終物に持っていけるとのことですが・・・ここが綺麗に決まっていれば・・・惜しいところですね。

tangutorine_6.gif全体的にトリッキーな変換は多くありませんが、基本が間違いなく押さえられたルートと見受けられました。

ところどころ官能基変換が冗長ですが、これは得てして不斉触媒適用型の全合成に見られがちなこととも思えます。
仮にですが、上記逆合成スキーム中央で示したようなものに類する化合物に対して、不斉アミノ化反応が適用できるならば、官能基変換は最小限に抑えられるように思います。

つまりは“適用基質の制限”がその根源的理由として考えうるわけですね。

この事実と合成ルートを眺めて、「ルートが汚くなりがちだから不斉触媒は使えない」とネガティブに見なしてしまうか、「このポイントを改善すればとても斬新なルートに出来る」とポジティブに捉えるか・・・このあたりは「何を目指しての全合成なのか」という、研究者のヴィジョン次第と言えそうです。

いずれにせよ、「不斉触媒にすり寄った基質デザイン」を考えなくて良いほど一般性ある実用的触媒反応というのは、今後とも開発が望まれるものの一つといえそうですね。

  • 関連文献
[1] (a) Nemoto, T.; Matsumoto, T.; Masuda, T.; Hitomi, T.; Hatano, K.; Hamada, Y. J. Am. Chem. Soc. 2004, 126, 3690. DOI: 10.1021/ja031792a (b) Nemoto, T.; Masuda, T.; Matsumoto, T.; Hamada, Y. J. Org. Chem. 2005, 70, 7172. DOI: 10.1021/jo050800y

[2] Nemoto, T.; Fukuyama, T.; Yamamoto, E.; Tamura, S.; Fukuda,
T.; Matsumoto, T.; Akimoto, Y.; Hamada, Y. Org. Lett. 2007, 9, 927. DOI: 10.1021/ol0700207

  • 関連リンク

千葉大薬学部・濱田康正研究室

cosine

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. ケムステスタッフ Zoom 懇親会を開催しました【前編】
  2. ピレスロイド系殺虫剤のはなし
  3. ケムステイブニングミキサー2019に参加しよう!
  4. 「重曹でお掃除」の化学(その2)
  5. 「もはや有機ではない有機材料化学:フルオロカーボンに可溶な材料の…
  6. 2つの触媒反応を”孤立空間”で連続的に行う
  7. 化学エネルギーを使って自律歩行するゲル
  8. γ-チューブリン特異的阻害剤の創製

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ビス(ヘキサフルオロアセチルアセトナト)銅(II)水和物 : Bis(hexafluoroacetylacetonato)copper(II) Hydrate
  2. シグマトロピー転位によるキラルα-アリールカルボニルの合成法
  3. ノーベル化学賞受賞者が講演 3月1日、徳島文理大学
  4. 「銅触媒を用いた不斉ヒドロアミノ化反応の開発」-MIT Buchwald研より
  5. ローゼンムント還元 Rosenmund Reduction
  6. 水口 賢司 Kenji Mizuguchi
  7. 寺崎 治 Osamu Terasaki
  8. 世界医薬大手の05年売上高、欧州勢伸び米苦戦・武田14位
  9. ヤコブセン転位 Jacobsen Rearrangement
  10. 高純度フッ化水素酸のあれこれまとめ その1

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2010年2月
« 1月   3月 »
1234567
891011121314
15161718192021
22232425262728

注目情報

注目情報

最新記事

【書籍】セルプロセッシング工学 (増補) –抗体医薬から再生医療まで–

今回ご紹介する書籍「セルプロセッシング工学 (増補) –抗体医薬から再生医療まで–」は、20…

芳香環にフッ素を導入しながら変形する: 有機フッ素化合物の新規合成法の開発に成功

第361回のスポットライトリサーチは、早稲田大学大学院先進理工学研究科(山口潤一郎研究室)小松田 雅…

湘南ヘルスイノベーションパークがケムステVプレミアレクチャーに協賛しました

レジェンド化学者もしくは第一人者の長時間講演を完全無料で放映する、ケムステVプレ…

化学企業が相次いで学会や顧客から表彰される

武蔵エナジーソリューションズ株式会社に所属する研究者が、2022年度電気化学会技術賞(棚橋賞)を受賞…

第20回次世代を担う有機化学シンポジウム

第20回記念!今年は若手向けの新企画もやります!「若手研究者が口頭発表する機会や自由闊達にディス…

ビナミジニウム塩 Vinamidinium Salt

概要ビナミジニウム塩(Vinamidinium Salt)は、カルボン酸をヴィルスマイヤー・ハッ…

伝わるデザインの基本 増補改訂3版 よい資料を作るためのレイアウトのルール

(さらに…)…

生体医用イメージングを志向した第二近赤外光(NIR-II)色素:②合成蛍光色素

バイオイメージングにおけるの先端領域の一つである「第二近赤外光(NIR-II)色素」についての総説を…

高分子鎖デザインがもたらすポリマーサイエンスの再創造|オンライン・対面併設|進化する高分子材料 表面・界面制御 Advanced コース

開講期間●令和4年 2月  14日(月)、17日(木):基礎編●       21日(月)、…

ホウ素化反応の常識を覆し分岐型アルケンの製造工程を大幅短縮

第 360回のスポットライトリサーチは、広島大学大学院 先進理工系科学研究科 博士課…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP