[スポンサーリンク]

A

原子移動ラジカル重合 Atom Transfer Radical Polymerization

[スポンサーリンク]

 

概要

ラジカル重合形式は二量化や水素引き抜きによる停止反応が問題とされてきたが、遷移金属錯体+有機ハライドをラジカル開始剤系として用いる事で、ドーマント種を関与させたリビング重合系にすることが可能となった。

ポリマー末端部は開始剤部の原子団でキャップされた形になっており、全体として原子団が移動して重合が完了したように見える。このため原子移動ラジカル重合(Atom Transfer Radical Polymerization; ATRP)という名前がついている。

ラジカル重合であるため官能基許容性が高く、分子量分布が非常に狭い(Mw/Mn=1.1-1.3)ことも特徴である。

基本文献

  • ・Kato, M.; Kamigaito, M.; Sawamoto, M.; Higashimura, T. Macromolecules 1995, 28, 1721. doi:10.1021/ma00109a056
  • Wang, J.; Matyjaszewski, K. J. Am. Chem. Soc.1995117, 5614. doi:10.1021/ja00125a035

Review

  • Matyjaszewski, K.; Xia, J. Chem. Rev. 2001101, 2921. DOI: 10.1021/cr940534g
  • Kamigaito, M.; Ando, T.; Sawamoto, M. Chem. Rev. 2001101, 3689. DOI: 10.1021/cr9901182
  • Pintauer, T.; Matyjaszewski, K. Chem. Soc. Rev. 200837, 1087. doi:10.1039/b714578k

 

開発の歴史

1995年にカーネギーメロン大学のクリストフ・マテャシェフスキー(銅触媒) 、京都大学の澤本光男(ルテニウム触媒)により同時期・独立に報告された。現在では(2012年)ATRPに関して12000報超の報告があり、工業的にも用いられている。近年両者はノーベル化学賞受賞候補者として頻繁に紹介されている。

クリストフ・マテャシェフスキーと澤本光男

クリストフ・マテャシェフスキーと澤本光男

 

反応機構

ラジカル成長末端はハロゲンと再結合し、活性末端とドーマント種(一時的に成長反応を休止している状態)との平衡過程にある。平衡はドーマント種側に偏っているために、活性種の濃度は低くなり、副反応が起こりにくくなっている。
ATRP_2.gif

反応例

実験手順

実験のコツ・テクニック

参考文献

 

関連反応

関連書籍

[amazonjs asin=”0841238545″ locale=”JP” title=”Advances in Controlled/Living Radical Polymerization (Acs Symposium Series)”][amazonjs asin=”0841239916″ locale=”JP” title=”Controlled/Living Radical Polymerization: From Synthesis to Materials (Acs Symposium Series)”][amazonjs asin=”B00CLZSCHA” locale=”JP” title=”Handbook of Vinyl Polymers: Radical Polymerization, Process, and Technology, Second Edition: Radical Polymerization and Technology (Plastics Engineering)”][amazonjs asin=”3527324925″ locale=”JP” title=”Controlled and Living Polymerizations: From Mechanisms to Applications”]

 

外部リンク

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. ハンチュ ジヒドロピリジン合成  Hantzsch Dihydr…
  2. ピナー反応 Pinner Reaction
  3. エルマンイミン Ellman’s Imine
  4. ピナコールカップリング Pinacol Coupling
  5. 不斉ストレッカー反応 Asymmetric Strecker R…
  6. 光延反応 Mitsunobu Reaction
  7. トリプトファン選択的タンパク質修飾反応 Trp-Selectiv…
  8. 歪み促進逆電子要請型Diels-Alder反応 SPIEDAC …

注目情報

ピックアップ記事

  1. 難分解性高分子を分解する画期的アプローチ:側鎖のC-H結合を活性化して主鎖のC-C結合を切る
  2. 大正製薬、女性用の発毛剤「リアップレディ」を来月発売
  3. 2次元分子の芳香族性を壊して、ホウ素やケイ素を含む3次元分子を作る
  4. 手術中にガン組織を見分ける標識試薬
  5. 自動車のスリ傷を高熱で自己修復する塗料
  6. 海外でのアカデミックポジションの公開インタビュー
  7. 中分子創薬に挑む中外製薬
  8. Essential Reagents for Organic Synthesis
  9. 穴の空いた液体
  10. 化学者がMidjourneyで遊んでみた

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2010年5月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

最新記事

【太陽ホールディングス】新卒採用情報(2026卒)

■■求める人物像■■「大きな志と好奇心を持ちまだ見ぬ価値造像のために前進できる人…

産総研の研究室見学に行ってきました!~採用情報や研究の現場について~

こんにちは,熊葛です.先日,産総研 生命工学領域の開催する研究室見学に行ってきました!本記事では,産…

第47回ケムステVシンポ「マイクロフローケミストリー」を開催します!

第47回ケムステVシンポジウムの開催告知をさせて頂きます!第47回ケムステVシンポジウムは、…

【味の素ファインテクノ】新卒採用情報(2026卒)

当社は入社時研修を経て、先輩指導のもと、実践(※)の場でご活躍いただきます。「いきなり実践で…

MI-6 / エスマット共催ウェビナー:デジタルで製造業の生産性を劇的改善する方法

開催日:2024年11月6日 申込みはこちら開催概要デジタル時代において、イノベーション…

窒素原子の導入がスイッチング分子の新たな機能を切り拓く!?

第630回のスポットライトリサーチは、大阪公立大学大学院工学研究科(小畠研究室)博士後期課程3年の …

エントロピーの悩みどころを整理してみる その1

Tshozoです。 エントロピーが煮詰まってきたので頭の中を吐き出し整理してみます。なんでこうも…

AJICAP-M: 位置選択的な抗体薬物複合体製造を可能にするトレースレス親和性ペプチド修飾技術

概要味の素株式会社の松田豊 (現 Exelixis 社)、藤井友博らは、親和性ペ…

材料開発におけるインフォマティクス 〜DBによる材料探索、スペクトル・画像活用〜

開催日:10/30 詳細はこちら開催概要研究開発領域におけるデジタル・トランスフォーメー…

ロベルト・カー Roberto Car

ロベルト・カー (Roberto Car 1947年1月3日 トリエステ生まれ) はイタリアの化学者…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP