[スポンサーリンク]

A

原子移動ラジカル重合 Atom Transfer Radical Polymerization

[スポンサーリンク]

 

概要

ラジカル重合形式は二量化や水素引き抜きによる停止反応が問題とされてきたが、遷移金属錯体+有機ハライドをラジカル開始剤系として用いる事で、ドーマント種を関与させたリビング重合系にすることが可能となった。

ポリマー末端部は開始剤部の原子団でキャップされた形になっており、全体として原子団が移動して重合が完了したように見える。このため原子移動ラジカル重合(Atom Transfer Radical Polymerization; ATRP)という名前がついている。

ラジカル重合であるため官能基許容性が高く、分子量分布が非常に狭い(Mw/Mn=1.1-1.3)ことも特徴である。

基本文献

  • ・Kato, M.; Kamigaito, M.; Sawamoto, M.; Higashimura, T. Macromolecules 1995, 28, 1721. doi:10.1021/ma00109a056
  • Wang, J.; Matyjaszewski, K. J. Am. Chem. Soc.1995117, 5614. doi:10.1021/ja00125a035

Review

  • Matyjaszewski, K.; Xia, J. Chem. Rev. 2001101, 2921. DOI: 10.1021/cr940534g
  • Kamigaito, M.; Ando, T.; Sawamoto, M. Chem. Rev. 2001101, 3689. DOI: 10.1021/cr9901182
  • Pintauer, T.; Matyjaszewski, K. Chem. Soc. Rev. 200837, 1087. doi:10.1039/b714578k

 

開発の歴史

1995年にカーネギーメロン大学のクリストフ・マテャシェフスキー(銅触媒) 、京都大学の澤本光男(ルテニウム触媒)により同時期・独立に報告された。現在では(2012年)ATRPに関して12000報超の報告があり、工業的にも用いられている。近年両者はノーベル化学賞受賞候補者として頻繁に紹介されている。

クリストフ・マテャシェフスキーと澤本光男

クリストフ・マテャシェフスキーと澤本光男

 

反応機構

ラジカル成長末端はハロゲンと再結合し、活性末端とドーマント種(一時的に成長反応を休止している状態)との平衡過程にある。平衡はドーマント種側に偏っているために、活性種の濃度は低くなり、副反応が起こりにくくなっている。
ATRP_2.gif

反応例

実験手順

実験のコツ・テクニック

参考文献

 

関連反応

関連書籍

[amazonjs asin=”0841238545″ locale=”JP” title=”Advances in Controlled/Living Radical Polymerization (Acs Symposium Series)”][amazonjs asin=”0841239916″ locale=”JP” title=”Controlled/Living Radical Polymerization: From Synthesis to Materials (Acs Symposium Series)”][amazonjs asin=”B00CLZSCHA” locale=”JP” title=”Handbook of Vinyl Polymers: Radical Polymerization, Process, and Technology, Second Edition: Radical Polymerization and Technology (Plastics Engineering)”][amazonjs asin=”3527324925″ locale=”JP” title=”Controlled and Living Polymerizations: From Mechanisms to Applications”]

 

外部リンク

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. ラロック インドール合成 Larock Indole Synth…
  2. ケック マクロラクトン化 Keck Macrolactoniza…
  3. ソープ・チーグラー反応 Thorpe-Ziegler React…
  4. トラウベ プリン合成 Traube Purin Synthesi…
  5. カイザーテスト Kaiser Test
  6. ローソン試薬 Lawesson’s Reagent
  7. エノラートの酸化的カップリング Oxidative Coupli…
  8. ガッターマン アルデヒド合成 Gattermann Aldehy…

注目情報

ピックアップ記事

  1. ワインレブアミドを用いたトリフルオロメチルケトン類の合成
  2. 始めよう!3Dプリンターを使った実験器具DIY:準備・お手軽プリント編
  3. 2023年化学企業トップの年頭所感を読み解く
  4. 第16回 結晶から結晶への化学変換 – Miguel Garcia-Garibay
  5. 金属錯体化学を使って神経伝達物質受容体を選択的に活性化する
  6. 広範な反応性代謝物を検出する蛍光トラッピング剤 〜毒性の黒幕を捕まえろ〜
  7. 特許の基礎知識(2)「発明」って何?
  8. X線分析の基礎知識【X線の性質編】
  9. ウコンの成分「クルクミン」自体に効果はない?
  10. スルホニルフルオリド

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2010年5月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

最新記事

リサイクル・アップサイクルが可能な植物由来の可分解性高分子の開発

第694回のスポットライトリサーチは、横浜国立大学大学院理工学府(跡部・信田研究室)卒業生の瀬古達矢…

第24回次世代を担う有機化学シンポジウム

「若手研究者が口頭発表する機会や自由闊達にディスカッションする場を増やし、若手の研究活動をエンカレッ…

粉末 X 線回折の基礎知識【実践·データ解釈編】

粉末 X 線回折 (powder x-ray diffraction; PXRD) は、固体粉末の試…

異方的成長による量子ニードルの合成を実現

第693回のスポットライトリサーチは、東京大学大学院理学系研究科(佃研究室)の髙野慎二郎 助教にお願…

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP