[スポンサーリンク]

スポットライトリサーチ

神経細胞の伸長方向を光で操る

[スポンサーリンク]

第84回目のスポットライトリサーチは、東京大学理学系研究科化学専攻小澤研究室遠藤瑞己特任研究員にお願いしました。

同研究室は、 “Opto-Bioanalysis” をキャッチフレーズとして、光を利用した生体分析研究を進めており、種々の生体分子の観察や操作を行っています。小澤研究室の遠藤特任研究員は、光を用いて神経軸索の伸長方向をコントロールした業績によって、日本ケミカルバイオロジー学会でRSC MolecularBiosystems ポスター賞を受賞されており、プレスリリースも発表されています。さらに、本成果はScientific Reports に報告されました。

M. Endo, M. Hattori, H. Toriyabe, H. Ohno, H. Kamiguchi, Y. Iino & T. Ozawa

Optogenetic activation of axon guidance receptors controls direction of neurite outgrowth

Scientific Reports 20166, 23976. DOI::10.1038/srep23976

筆頭著者の遠藤さんについて、研究室の主宰者である小澤岳昌教授からコメントを頂いています。

遠藤さんは,根っからの研究者気質で,独創的な発想で課題設定し,自ら積極的に新しい知識や技術を吸収しながら,解決していく才能をもった優秀な研究者です.英語も堪能であることから,外国人とのコミュニケーションを通じて,国際交流を積極的に図っています.今後,一研究者としてさらに世界で大きく活躍されることを期待しております.

今後益々のご活躍をお祈りしております。それでは、遠藤さんの研究成果をご覧ください!

 

Q1. 今回のプレス対象となったのはどんな研究ですか?

光によって神経軸索の伸長方向を人為的に制御する技術の開発を目指しました。

軸索伸長を担う受容体タンパク質DCCは、リガンドの結合による多量体形成によって活性化することが知られていました。そこで本研究では、青色光吸収によって多量体を形成するタンパク質CRY2をDCCと融合することで、リガンドがなくても光照射によって活性化する光応答性DCCを開発しました(図1、A)。光応答性DCCを神経細胞に導入すると、青色光照射側へと屈曲する様子が観察されました(図1、B上部)。また、大学内で線虫の研究を行っている飯野研究室との共同実験で、線虫体内の神経軸索についても同様に制御可能であることが判明し、本技術を応用することで伸長途中の神経軸索の可動方向が外部の構造体によって制限されることも直接明らかにすることができました(図1、B下部)。

 

図1. 光照射による神経軸索の伸長方向の制御

 

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

工夫したところは、生きた線虫個体内の神経軸索が光照射方向へ誘導されたかどうかを評価する際に、新しい解析手法を考案した点です。

従来、培養神経細胞における軸索誘導実験では、伸長方向の変化を示すパラメータとして屈曲角が用いられていますが、これには実験中に十分神経が伸長していることが必要です。今回のケースでは遺伝子変異を複数導入したためか伸長速度がかなり低下した状態での実験でしたので、うまく屈曲角が定義できませんでした。

そこで本研究では、全く新しい解析手法として、成長円錐の重心軌跡から光照射側への変位量を定義し、統計的解析を行うことにしました。前例のない解析手法でしたので研究室内の方々と議論を重ね、信頼性の向上に努めたので思い入れがあります。

 

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

難しかったのは線虫を用いた実験です。そもそも顕微鏡観察下で線虫体内の細胞を光制御する実験は前例がなかったので、どの神経細胞を標的とすべきか、どのように線虫を固定するのか、光照射条件は、解析方法は、など考慮すべき条件が多岐に渡っていました。初めはとりあえず適当な条件を思うがままに試してみたりしていたのですが、結果は芳しくありませんでした。そこで1つずつ条件を地道に検討して確定していくように方針を変えたところ、徐々に実験がうまくいきそうな感触を得ることができ、最後まで辿り着くことが出来ました。

 

Q4. 将来は化学とどう関わっていきたいですか?

化学の根本にあるのは、仰っている方も多いですが「ものづくり」の精神だと思います。

分析化学において、「もの」は「分析手法」であったりするわけですが、特に生命を対象とした研究では、その「分析手法」によって解明できる現象の種類・深度が非常に大きく異なります。今後も、こういった「もの=分析手法」づくりを通じて、今まで調べることのできなかった生命現象の一側面の解明に貢献できればと考えています。

 

Q5. 最後に、読者の皆さんにメッセージをお願いします。

ご多用の中、ここまでお読み頂き有難うございます。身体は資本ですので、心身両面の健康に気を配りながら研究生活を楽しんで下さい。

 

【略歴】

遠藤瑞己(えんどう みずき)

所属:東京大学理学部化学科 特任研究員(小澤研究室)

研究テーマ:光制御とイメージングを用いた生命現象における時空間情報コードの解析

Orthogonene

投稿者の記事一覧

有機合成を専門にするシカゴ大学化学科PhD3年生です。
趣味はスポーツ(器械体操・筋トレ・ランニング)と読書です。
ゆくゆくはアメリカで教授になって活躍するため、日々精進中です。

http://donggroup-sites.uchicago.edu/

関連記事

  1. 三核ホウ素触媒の創製からクリーンなアミド合成を実現
  2. アメリカ大学院留学:研究室選びの流れ
  3. Micro Flow Reactor ~革新反応器の世界~ (入…
  4. システインの位置選択的修飾を実現する「π-クランプ法」
  5. 有機色素の自己集合を利用したナノ粒子の配列
  6. 13族元素含有ベンゼンの合成と性質の解明
  7. フェノール類を選択的に加水素分解する新触媒を開発:リグニンから芳…
  8. ワールドクラスの日本人化学者が語る研究物語―『化学者たちの感動の…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 革新的なオンライン会場!「第53回若手ペプチド夏の勉強会」参加体験記
  2. ノッシェル・ハウザー塩基 Knochel-Hauser Base
  3. 育て!燃料電池を担う子供たち
  4. IR情報から読み解く大手化学メーカーの比較
  5. 化学 美しい原理と恵み (サイエンス・パレット)
  6. 高分子界の準結晶
  7. English for Presentations at International Conferences
  8. イヴァン・フック Ivan Huc
  9. pre-MIBSK ~Dess-Martin試薬と比べ低コスト・安全なアルコール酸化触媒~
  10. Cell Pressが化学のジャーナルを出版

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年3月
« 2月   4月 »
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

注目情報

最新記事

エキノコックスにかかわる化学物質について

Tshozoです。40年以上前でしょうか、手塚治虫氏の有名な作品「ブラック・ジャック」でこう…

秋田英万 Akita Hidetaka

秋田 英万(あきた ひでたか)は、日本の有機化学者である。千葉大学薬学研究院および東北大学薬学研究院…

香料化学 – におい分子が作るかおりの世界

(さらに…)…

ギ酸ナトリウムでconPETを進化!

塩化アリールのラジカルカップリング反応が開発された。芳香環の電子状態にかかわらず種々の塩化アリールに…

料理と科学のおいしい出会い: 分子調理が食の常識を変える

(さらに…)…

シビれる(T T)アジリジン合成

電気化学的に不活性アルケンと一級アミンをカップリングさせることで、N-アルキルアジリジンが合成された…

mi3 企業研究者のためのMI入門③:避けて通れぬ大学数学!MIの道具として数学を使いこなすための参考書をご紹介

最近よく耳にするデジタル・トランスフォーメーション(DX)やマテリアルズ・インフォマティクス(MI)…

産総研より刺激に応じて自在に剥がせるプライマーが開発される

産業技術総合研究所機能化学研究部門スマート材料グループ 相沢 美帆 研究員は、刺激を加える前には接着…

マイクロ波の技術メリット・事業メリットをお伝えします!/マイクロ波化学(株)10月度ウェビナー

10月は当社(マイクロ波化学)の技術あるいは当社の事業に興味がある方、それぞれをテーマにしたウェビナ…

宮田完ニ郎 Miyata Kanjiro

宮田 完ニ郎 (みやた かんじろう) は、日本の有機化学者である。東京大学大学院工学系研究科マテリア…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP