[スポンサーリンク]

化学者のつぶやき

BO triple bond

[スポンサーリンク]

筆者が個人的に好きな基礎化学研究の中に「新しい結合の創生」があります。
シンプルゆえに成果そのもののインパクトも大きいとは思いますが、なにより
「そのシンプルな成果に辿り着くまでのストーリー」が、その研究者の研究歴、そう研究者の背後から垣間見えてくることが、非常に面白い。

 

 

このような研究成果は「ある日偶然生まれる」セレンディピティタイプと言うよりも、試行錯誤やちょっとしたアイディアで辿り着くもの。また、今後役に立つか立たないか可能性は未知数であり、将来的な展開にも興味がそそられます。

 

さて、最近いくつか新しい結合が相次いで報告されていますが、その中から最もシンプルなホウ素-酸素三重結合についての論文がScienceに報告されたので紹介します。

Holger Braunschweig,* Krzysztof Radacki, Achim Schneider Science 328, 345 (2010);DOI: 10.1126/science.1186028

ドイツのHolger Braunschweigらグループ[1]は、Pt錯体とBr2B(OSiMe3)という極めて単純な化合物の組み合わせからBO三重結合の合成に成功しています[2](下図)。(単純と言いましたが、筆者は経験的にBr2B(OSiMe3)が曲者であることも知っています)

2015-11-01_18-01-07

 

 

以下、関連分野の方の為に、細かい点をポイントだけ抑えて紹介します
——————————————————————————————————————————-
B-Br結合がPtに酸化的付加した後、Me3SiBrの脱離が進行しています。
Me3SiBrの脱離は付加反応と平衡状態にあることから、「溶媒及びMe3SiBrの除去→溶媒を加える」を繰り返すことで最終的に目的物 2のみを得ることが出来ています。

この辺り、何が起こりえるのかイメージできるセンスがないと、スペクトルだけからでは間違った判断をしかねない所だと思います。(ホウ素NMRは濃いサンプルでしか観測できなかったと述べられていますし)。その11B NMR、1が32ppmに対し 2は少し高磁場シフトして17ppm。

そして気になるBO結合長さは1.205(7)Aと、B=Oと比較すると7.2%の短縮とのこと。
IRでは1853と1797 cm?1(ホウ素は10B:11B = 20:80の同位体が存在するため)に、BO伸縮振動に帰属されるシグナルを観測しています。
また理論計算では、ホウ素-酸素間に二つのπ結合性軌道の存在を支持する結果が得られています(下図)。

 

2015-11-01_18-03-19

(画像:Science誌より)
——————————————————————————————————————————-

とまぁ、これだけしっかり考察されていると、誰もその三重結合性を疑わないと思います。

余談ですが、新しい多重結合ができると、その多重結合性については必ず議論になります。
ご存知の方も多いかと思いますが、かつてRobinsonがGa≡Gaを初めて合成したという論文を発表した際[3]、「ほんとにそれは三重結合と呼べるのか?!」と世界中で物議を醸し出したことがありました。理論計算等による視点から、Robinsonの成果に否定的な論文やそれに応える形の論文が次々とJACSやAngewを含む多くのジャーナルに掲載され、C&E NEWSでは「Gallium ‘Triple Bonds’ Under Fire」というタイトルの記事まで書かれました[4]。
(筆者は、真実を追究するために多くの議論があることはとても良いことだと思いますが、当時「人種差別も含まれているのでは」と言う噂が出たことと、それにとても不快感を感じたのを覚えています)。

さて、これほど単純な反応で合成されたBO三重結合ですが、どうしてこれまでに合成できなかったのでしょうか。
それは、電気陰性度の差(ホウ素 2.04: 酸素 3.44)から、簡単に多量化(環化)が進行してしまうため、単量体として単離するには何かしら「技」が必要だったんですね。

Braunschweigらは、嵩高いP(Cy)3を二つ用つPt錯体を利用することでBOを立体的に保護しています。また、BOπ電子に対するPt上d電子の相互作用も安定化に貢献していることがMOから解ります。結果的に、2はHg/Xeランプ照射や、ベンゼン中/100℃で24時間加熱しても安定とのこと。
こんなにも化学的性質が変わるもんなんですねー。

過去の論文をさかのぼって見てみると、Braunschweigらは10年以上前から様々なタイプのホウ素-遷移金属錯体を合成しています。
その流れの中から、今回の反応へと辿り着くためには「不安定と報告されていたBr2B(OSiMe3)を使いこなす」という、ちょっとしたひらめき&挑戦が必要だったのだろうと、筆者は感じています。

出来てしまえば、なんてことは無い単純な試薬や反応でも、それを思いつくことができるかどうかで研究の流れや価値は180度変わります。
それは「どこか・いつか」の話ではなくて、もしかしたら「今日」皆さんが扱っている実験の中で活かされることかもしれません。

最後に、研究成果も素晴らしいですが、こういう側面を学びながら論文を見る目を養うことも、日常でできる重要な訓練かと思います。日本で研究していた頃は気付きませんでしたが、筆者はアメリカで研究していて、同僚と論文についてディスカッションする度に、人それぞれいろんな論文の見方をしているんだなと感じる場面に数多く出くわします。同じ論文を読んでも、自分と同じ様に解釈しているんだなと勝手に決め込まずに、いろいろ話してみるのはいいことだと思います。

 

引用文献

[1] (a) ‘Oxoboryl Complexes: Boron?Oxygen Triple Bonds Stabilized in the Coordination Sphere of Platinum ‘ DOI: 10.1126/science.1186028
(b) C&E NEWS
[2] Holger Braunschweig’s Group
[3] J Am Chem Soc (1997, 119, 5471) DOI: 10.1021/ja9700562
[4] GALLIUM ‘TRIPLE BONDS’ UNDER FIRE(C&E NEWS

 

The following two tabs change content below.
StarryNight

StarryNight

関連記事

  1. 水入りフラーレンの合成
  2. Dead Endを回避せよ!「全合成・極限からの一手」①(解答編…
  3. 最近の金事情
  4. 抗薬物中毒活性を有するイボガイン類の生合成
  5. 3Mとはどんな会社?
  6. アメリカの大学院で受ける授業
  7. とある水銀化合物のはなし チメロサールとは
  8. トリチウム水から完全無害な水素ガスを作り出す?

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 「野依フォーラム若手育成塾」とは!?
  2. エストロゲン、閉経を境に正反対の作用
  3. 円偏光発光を切り替える色素ー暗号通信への応用に期待ー
  4. 20年新卒の志望業界ランキング、化学は総合3位にランクイン
  5. コラボリー/Groups(グループ):サイエンスミートアップを支援
  6. ヴィンス・ロテロ Vincent M. Rotello
  7. 求核剤担持型脱離基 Nucleophile-Assisting Leaving Groups (NALGs)
  8. ダウ・ケミカル化学プラントで爆発死亡事故(米・マサチューセッツ)
  9. 学問と創造―ノーベル賞化学者・野依良治博士
  10. ヘキサニトロヘキサアザイソウルチタン / Hexanitrohexaazaisowurtzitane (HNIW)

関連商品

注目情報

注目情報

最新記事

第49回―「超分子の電気化学的挙動を研究する」Angel Kaifer教授

第49回の海外化学者インタビューは、エンジェル・カイファー教授です。マイアミ大学化学科で超分子系電気…

日本化学会 第100春季年会 市民公開講座 夢をかなえる科学

■ 概要企画名:    市民公開講座 夢をかなえる科学主催:        公益社団法人…

第48回―「周期表の歴史と哲学」Eric Scerri博士

第48回の海外化学者インタビューは、エリック・セリー博士です。英国で教育を受け、カリフォルニア大学ロ…

ペプチド縮合を加速する生体模倣型有機触媒

2019年、ニューヨーク大学のParamjit S. Aroraらは、活性アシル中間体への求核付加遷…

第47回―「ロタキサン・カテナン・クラウンエーテルの超分子化学」Harry Gibson教授

第47回の海外化学者インタビューは、ハリー・ギブソン教授です。バージニア工科大学の化学科に所属し、プ…

女優・吉岡里帆さんが、化学大好きキャラ「DIC岡里帆(ディーアイシーおか・りほ)」に変身!

印刷インキや有機顔料世界トップシェアのDIC株式会社は、2020年1月より、数々のヒット作に出演し、…

Chem-Station Twitter

PAGE TOP