[スポンサーリンク]

化学者のつぶやき

ヒドラジン

[スポンサーリンク]

 

ロケット燃料や衛星の姿勢制御の為の燃料に使われているヒドラジン(H2NNH2)、ご存知のとおり、有機無機さまざまな化合物に対して還元性が非常に高いため、還元目的以外の反応に利用するとなると、反応の制御には工夫を要することが多くなります。

少し前ですが、パラジウム触媒を用いたAr-Cl(or Ar-OTs)とヒドラジンのカップリング反応がAngew誌に報告されていたので紹介したいと思います。

Rylan J. Lundgren and Mark Stradiotto
Angew. Chem. Int. Ed. 2010, 49, 8686-8690, DOI: 10.1002/anie.201003764.

 

ざっくり、どうしてH2NNH2を使ったPd触媒-カップリング反応が難しいのかを説明すると、

(1)原料のAr-Clが脱塩化水素&水素化によりAr-Hになる
(2)鍵中間体である二価のPd(II)がPd(0)に還元されてしまう
(3)生成物が三つのNHを持つことになるので、さらに反応が進行してしまう可能性がある
(4)生成物のN-N結合がPdとの相互作用を通して開裂してしまう

とまぁ、一個ずつでも完璧に解決するには厄介な問題を、全部クリアしなくてはいけない訳ですね。その上、ヒドラジンは発熱的分解反応により、爆発を起こす危険性も高い。。。

いろんな意味でいつ終わるか解らないこのテーマ、やることになったら皆さんならどうします??

上記の問題を敬遠するために、H2NNH2と比べ反応性の穏やかな置換ヒドラジン(R2NNHR)やヒドラゾン(R2C=NNHR)、ヒドラジド(R(C=O)NHNR2)を用いた反応は報告されていたのですが、H2NNH2となるとやはり前例がありませんでした。

 

でもそこに酷辣山(ヒドラジン)があったから(T^T)!!

Mark Stradiotto研究室(Dalhousie University)の院生 Rylan氏は、一人でこの課題を克服したようです。
反応は、基質に対して2当量のヒドラジンと塩基、触媒量のPdと配位子をジオキサン中で30分から1時間加熱するのみ。一度うまく行ってスキームで書くと、以下のようなシンプルな反応なんですけどねぇ。

 

rk20101114.gif

 

 

さて、今回のポイントとして一番注目したいのが、彼らが利用したMor-DalPhosという配位子
ビスアダマンチルフェニルホスフィンで、モルフォリル基がオルト位に置換したもの。
P&Nの二座配位子として働くようです。

rk201011142.gif

見てのとおり、嵩高い&電子供与性が優れているため、
(1)触媒どうしの相互作用による失活を防ぐ
(2)Pd(II)が他の配位子の時より電子豊富で還元されにくい
(3)還元的脱離(Ar-N結合の形成)過程の促進
(4)無置換のH2NNH2との反応性が高い(生成物との相互作用が抑えられる)

うむ、この反応を成し得るために生まれたような配位子ですね。
しかしC&E NEWSのコメントによると、配位子効果の詳細な解明まだまだこれからとのこと。

反応中間体マニアとしては、理論計算などにより、反応機構の詳細や遷移状態などが明らかにされることを期待してますが、一見特殊なこの配位子、よくよく見ると「嵩高く」「電子供与性に優れた」「多座の配位子である」という、近年の触媒化学の発展に貢献した基本事項をしっかり押さえたものであると思います。

きっと、大きな課題に挑戦する時には、抑えるべきポイントをしっかりと軸に組み込んだうえで、
分子や反応をどのようにデザインしていくのかというセンスも重要なんだろうなと、この論文を読んで再認識しました。ちょっとでも多く先人の知恵を取り込んで、効率的な登頂を目指そうと思ったのでした。

含窒素化合物の原料として用いるには、取り扱いや反応の制御が困難だったヒドラジンやアンモニア。これらを利用できる反応が、ごく最近ようやく現れ始めてきた気がします。

C&EのJ. Haggins氏が1993年に書いた記事では、アンモニア等を用いた触媒反応が
「触媒化学における10大チャレンジ」に挙げられていましたが[1]、17年でここまできたと思うと
私たちが想像している以上の速さで化学は発展している気がしますね。

 

ところで、論文中で使用されているヒドラジンは水分子を一つ含む水和物ですが、より反応性の高い無水物も存在します。
この無水物、筆者も以前使用したことがあるのですが、ヒドラジン無水物の入ったNMR管がオイルバスで加熱中に破裂したことがありました。おそらくNMR管の底部分に傷がついていたのだと思いますが、耐圧性の封管されたNMR管だったので、まさにロケットの様にドラフト内の天井に発射したのを、ガラスシールド越しに目の当たりにしました。宇宙はフラクタルだなぁ。

ヒドラジンの使用には十~分のご注意を!

 

関連文献

  1.  J. Haggin, Chem. Engl. News, 1993, 71, 23

 

関連リンク

 

関連書籍

 

関連記事

  1. パラジウムが要らない鈴木カップリング反応!?
  2. シリンドロシクロファン生合成経路の解明
  3. 光で脳/神経科学に革命を起こす「オプトジェネティクス」
  4. クロスカップリング反応ーChemical Times特集より
  5. ケムステ版・ノーベル化学賞候補者リスト【2018年版】
  6. ニセ試薬のサプライチェーン
  7. 来年の応募に向けて!:SciFinder Future Lead…
  8. ふにふにふわふわ☆マシュマロゲルがスゴい!?

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 第71回―「化学のリーディングジャーナルを編集する」Stephen Davey博士
  2. Chem-Stationついに7周年!
  3. 医薬品のプロセス化学
  4. アーノルド・レインゴールド Arnold L. Rheingold
  5. これからの研究開発状況下を生き抜くための3つの資質
  6. ジェイムス・ブル エナンチオ過剰率決定法 James-Bull Method for Determination of Enantiomeric Excess
  7. 「世界最小の元素周期表」が登場!?
  8. ニコラス反応 Nicholas Reaction
  9. 二段励起型可視光レドックス触媒を用いる還元反応
  10. 化学研究特化型アプリまとめ

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

巧みに設計されたホウ素化合物と可視光からアルキルラジカルを発生させる

第268回のスポットライトリサーチは、金沢大学医薬保健研究域薬学系(大宮研究室)の佐藤 由季也(さと…

第111回―「予防・診断に有効なナノバイオセンサーと太陽電池の開発」Ted Sargent教授

第111回の海外化学者インタビューは、Ted Sargent教授です。トロント大学電気・計算機工学科…

アレノフィルを用いるアレーンオキシドとオキセピンの合成

脱芳香族化を伴う直接的な酸化により芳香族化合物からアレーンオキシドとオキセピンを合成する手法が開発さ…

ケムステニュース 化学企業のグローバル・トップ50が発表【2020年版】

It's no secret that the COVID-19 pandemic ha…

スポットライトリサーチムービー:動画であなたの研究を紹介します

5年前、ケムステ15周年の際に新たな試みとしてはじめたコンテンツ「スポットライトリサーチ」。…

第110回―「動的配座を制御する化学」Jonathan Clayden教授

第110回の海外化学者インタビューは、ジョナサン・クレイデン教授です。マンチェスター大学化学科(訳注…

化学研究で役に立つデータ解析入門:エクセルでも立派な解析ができるぞ編

化学分野でのAIを使った研究が多数報告されていてデータ解析は流行のトピックとなっていますが、専門外か…

高分子化学をふまえて「神経のような動きをする」電子素子をつくる

第267回のスポットライトリサーチは、東北大学大学院工学研究科 バイオ工学専攻 三ツ石研究室 助教の…

Chem-Station Twitter

PAGE TOP