[スポンサーリンク]

一般的な話題

化学者のためのエレクトロニクス講座~配線技術の変遷編

[スポンサーリンク]

このシリーズでは、化学者のためのエレクトロニクス講座では半導体やその配線技術、フォトレジストやOLEDなど、エレクトロニクス産業で活躍する化学や材料のトピックスを詳しく掘り下げて紹介します。今回は半導体内部の配線技術の変遷を取り上げます。

chip

chip

半導体チップ(画像:pixabay)

アルミニウム配線の時代(~1990年代)

プロセス技術の発展に伴って半導体ウエハの微細加工が容易になりましたが、その内部配線の形成は依然として課題でした。

1958年にテキサス・インスツルメンツ社(米)のジャック・キルビーがシリコンのみからなる集積回路(モノリシックIC)を発明しました(キルビー特許)が、素子間の接続は単に金線のボンディングで結んだだけでした。これは振動などの機械的な衝撃に対して不安定な構造でした。

この問題を解決したのは、後にIntel社を設立することになるフェアチャイルド社(米)のロバート・ノイスでした。彼はキルビーの発明に遅れること半年の1959年に、モノリシックIC上のSiO2絶縁膜上にアルミニウムAl薄膜を蒸着することで素子間の導通を図りました。彼の特許(プレーナ特許)は今日の半導体製造の基礎となるものです。

初期の半導体配線の例(画像:Wikipedia

Alは比抵抗が銀、銅、金についで低いほか、コストや耐酸化性、SiO2との良好な密着性などを備えており、電極材料として最適でした。

しかし微細化が進むにつれ、シリコンとの界面での相互拡散や、自由電子が金属原子と衝突して運動エネルギーを与えることで配線の断線に至るエレクトロマイグレーション(EM)が無視できなくなります。そこで配線材料のAlにシリコンや銅などの不純物を微量添加することが試みられましたが、従来の蒸着法では添加量の制御が困難であったことから、1970年代後半にはスパッタによる成膜が主流となりました。

こうして3%ほどのシリコンを添加したAlによる配線は1970年代以降長らく使われましたが、さらなる微細化の進展によってEM耐性の向上と抵抗値の低減による信号遅延と消費電力の抑制が急務となりました。

銅ダマシンめっきの確立

そこでアルミニウムに代わる配線材料として脚光を浴びたのがでした。銅は銀に次いで電気抵抗が低く、Alの2/3程度しかありません。さらにEM耐性の指標である許容電流密度がAlより一桁近く高いこと、銀や金に比べて安価であることなど多くの利点がありました。

しかしながら、銅はAlとは異なり、プラズマエッチングによるパターニングが難しく、これが実用化の障壁となっていました。

その打開のために発展したのが、ダマシンと呼ばれるめっき技術です。

ダマシンとはまたの名を象嵌といい、溝や穴などの微細な凹部を埋めるようにめっきする手法です。シリアの首都、ダマスカスにおける工芸品の製造プロセスによく似ていることにちなんで命名されたといわれます。

しかし、この技術の開発にも並々ならぬ困難がありました。

めっきによる金属の析出は、反応種の金属イオンが拡散で到達しやすい電極の凸部ほど起こりやすいのが一般的です。極端な例としては、樹枝状に析出した金属樹が挙げられます。

銅樹(画像:Wikipedia

しかしダマシンにおいてはその逆で、凹部ほど速く析出させる必要があります。この析出の制御を可能とするのが、めっき浴に微量加えられる添加剤です。基本的には微細な空孔に入り込みやすい低分子の添加剤が析出促進を、入りにくい大きな分子が阻害を担うことによって凹凸を埋めるように析出が進行します。

現在広く用いれている銅めっき浴のうち代表的なものに硫酸銅(II)をベースとする硫酸銅浴がありますが、これに添加されているのは主に以下の3種類です。

①ノニオン系界面活性剤:Cl存在下で中間体のCu+を捕捉して電極上に単分子吸着し、析出を阻害する。

ex) PEGなど

②光沢剤:結晶核の成長点に吸着することで大きな結晶が成長するのを阻害し、新たな結晶核の発生を促進する。さらに、めっき皮膜中に取り込まれずに残存することで、表面積が漸減する凹部に集中して水素の吸着を阻害することで、結果的に凹部での析出を促進する。

ex) bis (3-sulfopropyl)disulfidedisodium(SPSなどの有機硫黄化合物

③レベラー:電極への吸着が拡散律速であるため凸部に選択的に吸着し、析出を阻害する。

ex) ヤヌスグリーンB (JGB)など

このほか、ピロリン酸銅(II)をベースとするピロリン酸銅浴には②のSPSの代わりにジメルカプトチアジアゾール(DMTDなどが供されています。

これからのダマシン技術

さらなる微細化に伴い銅濃度の低減による析出精度の向上が図られていますが、このような条件においてはめっき皮膜中にボイドが形成されやすく、これが信頼性維持の課題となっています。ボイドは皮膜に共析したPEGが原因となっていることも多く、その克服が待たれます。

また、半導体配線は絶縁体のSiO2膜などの上に形成することから、全工程を無電解めっきのみで完結させることができれば最も合理的です。現在ULSI配線向けにCo2+を還元剤として用いる無電解銅めっきの開発が急がれています。

ということで、アルミニウムから銅へと代替された半導体配線の歴史をご覧いただきました。次回は次世代の配線材料について特集しますのでお楽しみに!

関連リンク

日本半導体歴史館

PC Watch

関連書籍

[amazonjs asin=”4526053732″ locale=”JP” title=”次世代めっき技術―表面技術におけるプロセス・イノベーション”] [amazonjs asin=”4526045225″ locale=”JP” title=”表面処理工学―基礎と応用”] [amazonjs asin=”4526049964″ locale=”JP” title=”電子部品のめっき技術”]
gaming voltammetry

berg

投稿者の記事一覧

化学メーカー勤務。学生時代は有機をかじってました⌬
電気化学、表面処理、エレクトロニクスなど、勉強しながら執筆していく予定です

関連記事

  1. 研究者の成長を予測できる?:JDream Expert Find…
  2. ミツバチに付くダニのはなし
  3. メカノケミストリーを用いた固体クロスカップリング反応
  4. 第10回ケムステVシンポ「天然物フィロソフィ」を開催します
  5. フッ化セシウムをフッ素源とする立体特異的フッ素化有機分子の合成法…
  6. 化学研究ライフハック :RSSリーダーで新着情報をチェック!20…
  7. “click”の先に
  8. 第33回ケムステVシンポ「研究DXとラボラトリーオートメーション…

注目情報

ピックアップ記事

  1. 第113回―「量子コンピューティング・人工知能・実験自動化で材料開発を革新する」Alán Aspuru-Guzik教授
  2. 魅惑の薫り、漂う香り、つんざく臭い
  3. デヴィッド・エヴァンス David A. Evans
  4. 有機合成化学協会誌2023年11月号:英文特別号
  5. スターバースト型分子、ヘキサアリールベンゼン合成の新手法
  6. おまえら英語よりもタイピングやろうぜ ~中級編~
  7. 有機合成化学協会誌2019年5月号:特集号 ラジカル種の利用最前線
  8. ケムステV年末ライブ2024を開催します!
  9. 水素 Hydrogen -最も基本的な元素で、燃料電池の原料
  10. 化学大手2014年4–9月期決算:概して増収増益

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年10月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

最新記事

創薬懇話会2025 in 大津

日時2025年6月19日(木)~6月20日(金)宿泊型セミナー会場ホテル…

理研の研究者が考える未来のバイオ技術とは?

bergです。昨今、環境問題や資源問題の関心の高まりから人工酵素や微生物を利用した化学合成やバイオテ…

水を含み湿度に応答するラメラ構造ポリマー材料の開発

第651回のスポットライトリサーチは、京都大学大学院工学研究科(大内研究室)の堀池優貴 さんにお願い…

第57回有機金属若手の会 夏の学校

案内:今年度も、有機金属若手の会夏の学校を2泊3日の合宿形式で開催します。有機金…

高用量ビタミンB12がALSに治療効果を発揮する。しかし流通問題も。

2024年11月20日、エーザイ株式会社は、筋萎縮性側索硬化症用剤「ロゼバラミン…

第23回次世代を担う有機化学シンポジウム

「若手研究者が口頭発表する機会や自由闊達にディスカッションする場を増やし、若手の研究活動をエンカレッ…

ペロブスカイト太陽電池開発におけるマテリアルズ・インフォマティクスの活用

持続可能な社会の実現に向けて、太陽電池は太陽光発電における中心的な要素として注目…

有機合成化学協会誌2025年3月号:チェーンウォーキング・カルコゲン結合・有機電解反応・ロタキサン・配位重合

有機合成化学協会が発行する有機合成化学協会誌、2025年3月号がオンラインで公開されています!…

CIPイノベーション共創プログラム「未来の医療を支えるバイオベンチャーの新たな戦略」

日本化学会第105春季年会(2025)で開催されるシンポジウムの一つに、CIPセッション「未来の医療…

OIST Science Challenge 2025 に参加しました

2025年3月15日から22日にかけて沖縄科学技術大学院大学 (OIST) にて開催された Scie…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー