[スポンサーリンク]

一般的な話題

化学者のためのエレクトロニクス講座~配線技術の変遷編

[スポンサーリンク]

このシリーズでは、化学者のためのエレクトロニクス講座では半導体やその配線技術、フォトレジストやOLEDなど、エレクトロニクス産業で活躍する化学や材料のトピックスを詳しく掘り下げて紹介します。今回は半導体内部の配線技術の変遷を取り上げます。

chip

chip

半導体チップ(画像:pixabay)

アルミニウム配線の時代(~1990年代)

プロセス技術の発展に伴って半導体ウエハの微細加工が容易になりましたが、その内部配線の形成は依然として課題でした。

1958年にテキサス・インスツルメンツ社(米)のジャック・キルビーがシリコンのみからなる集積回路(モノリシックIC)を発明しました(キルビー特許)が、素子間の接続は単に金線のボンディングで結んだだけでした。これは振動などの機械的な衝撃に対して不安定な構造でした。

この問題を解決したのは、後にIntel社を設立することになるフェアチャイルド社(米)のロバート・ノイスでした。彼はキルビーの発明に遅れること半年の1959年に、モノリシックIC上のSiO2絶縁膜上にアルミニウムAl薄膜を蒸着することで素子間の導通を図りました。彼の特許(プレーナ特許)は今日の半導体製造の基礎となるものです。

初期の半導体配線の例(画像:Wikipedia

Alは比抵抗が銀、銅、金についで低いほか、コストや耐酸化性、SiO2との良好な密着性などを備えており、電極材料として最適でした。

しかし微細化が進むにつれ、シリコンとの界面での相互拡散や、自由電子が金属原子と衝突して運動エネルギーを与えることで配線の断線に至るエレクトロマイグレーション(EM)が無視できなくなります。そこで配線材料のAlにシリコンや銅などの不純物を微量添加することが試みられましたが、従来の蒸着法では添加量の制御が困難であったことから、1970年代後半にはスパッタによる成膜が主流となりました。

こうして3%ほどのシリコンを添加したAlによる配線は1970年代以降長らく使われましたが、さらなる微細化の進展によってEM耐性の向上と抵抗値の低減による信号遅延と消費電力の抑制が急務となりました。

銅ダマシンめっきの確立

そこでアルミニウムに代わる配線材料として脚光を浴びたのがでした。銅は銀に次いで電気抵抗が低く、Alの2/3程度しかありません。さらにEM耐性の指標である許容電流密度がAlより一桁近く高いこと、銀や金に比べて安価であることなど多くの利点がありました。

しかしながら、銅はAlとは異なり、プラズマエッチングによるパターニングが難しく、これが実用化の障壁となっていました。

その打開のために発展したのが、ダマシンと呼ばれるめっき技術です。

ダマシンとはまたの名を象嵌といい、溝や穴などの微細な凹部を埋めるようにめっきする手法です。シリアの首都、ダマスカスにおける工芸品の製造プロセスによく似ていることにちなんで命名されたといわれます。

しかし、この技術の開発にも並々ならぬ困難がありました。

めっきによる金属の析出は、反応種の金属イオンが拡散で到達しやすい電極の凸部ほど起こりやすいのが一般的です。極端な例としては、樹枝状に析出した金属樹が挙げられます。

銅樹(画像:Wikipedia

しかしダマシンにおいてはその逆で、凹部ほど速く析出させる必要があります。この析出の制御を可能とするのが、めっき浴に微量加えられる添加剤です。基本的には微細な空孔に入り込みやすい低分子の添加剤が析出促進を、入りにくい大きな分子が阻害を担うことによって凹凸を埋めるように析出が進行します。

現在広く用いれている銅めっき浴のうち代表的なものに硫酸銅(II)をベースとする硫酸銅浴がありますが、これに添加されているのは主に以下の3種類です。

①ノニオン系界面活性剤:Cl存在下で中間体のCu+を捕捉して電極上に単分子吸着し、析出を阻害する。

ex) PEGなど

②光沢剤:結晶核の成長点に吸着することで大きな結晶が成長するのを阻害し、新たな結晶核の発生を促進する。さらに、めっき皮膜中に取り込まれずに残存することで、表面積が漸減する凹部に集中して水素の吸着を阻害することで、結果的に凹部での析出を促進する。

ex) bis (3-sulfopropyl)disulfidedisodium(SPSなどの有機硫黄化合物

③レベラー:電極への吸着が拡散律速であるため凸部に選択的に吸着し、析出を阻害する。

ex) ヤヌスグリーンB (JGB)など

このほか、ピロリン酸銅(II)をベースとするピロリン酸銅浴には②のSPSの代わりにジメルカプトチアジアゾール(DMTDなどが供されています。

これからのダマシン技術

さらなる微細化に伴い銅濃度の低減による析出精度の向上が図られていますが、このような条件においてはめっき皮膜中にボイドが形成されやすく、これが信頼性維持の課題となっています。ボイドは皮膜に共析したPEGが原因となっていることも多く、その克服が待たれます。

また、半導体配線は絶縁体のSiO2膜などの上に形成することから、全工程を無電解めっきのみで完結させることができれば最も合理的です。現在ULSI配線向けにCo2+を還元剤として用いる無電解銅めっきの開発が急がれています。

ということで、アルミニウムから銅へと代替された半導体配線の歴史をご覧いただきました。次回は次世代の配線材料について特集しますのでお楽しみに!

関連リンク

日本半導体歴史館

PC Watch

関連書籍

[amazonjs asin=”4526053732″ locale=”JP” title=”次世代めっき技術―表面技術におけるプロセス・イノベーション”] [amazonjs asin=”4526045225″ locale=”JP” title=”表面処理工学―基礎と応用”] [amazonjs asin=”4526049964″ locale=”JP” title=”電子部品のめっき技術”]
gaming voltammetry

berg

投稿者の記事一覧

化学メーカー勤務。学生時代は有機をかじってました⌬
電気化学、表面処理、エレクトロニクスなど、勉強しながら執筆していく予定です

関連記事

  1. 安定なケトンのケイ素類縁体“シラノン”の合成 ケイ素—酸素2重結…
  2. ありふれた試薬でカルボン酸をエノラート化:カルボン酸の触媒的α-…
  3. 化学の資格もってますか?
  4. 第30回ケムステVシンポ「世界に羽ばたく日本の化学研究」ーAld…
  5. 化学系学生のための就活2020
  6. シクロペンタジエニル錯体の合成に一筋の光か?
  7. 第98回日本化学会春季年会 付設展示会ケムステキャンペーン Pa…
  8. 有機反応を俯瞰する ーMannich 型縮合反応

注目情報

ピックアップ記事

  1. GRCにいってきました:ボストン周辺滞在記2025 Part I
  2. チャート式実験器具選択ガイド:実験メガネ・白衣編
  3. Density Functional Theory in Quantum Chemistry
  4. 私がなぜケムステスタッフになったのか?
  5. 多価不飽和脂肪酸による光合成の不活性化メカニズムの解明:脂肪酸を活用した光合成活性の制御技術開発の可能性
  6. 二量化の壁を超えろ!β-アミノアルコール合成
  7. 2,2,2-トリクロロエトキシカルボニル保護基 Troc Protecting Group
  8. ダン・シェヒトマン博士の講演を聞いてきました。
  9. 経験と資格を生かしたいが実務経験なし。 そんな30代女性の再就職をかなえたビジョンマッチング
  10. 黒田 一幸 Kazuyuki Kuroda

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年10月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

最新記事

異方的成長による量子ニードルの合成を実現

第693回のスポットライトリサーチは、東京大学大学院理学系研究科(佃研究室)の髙野慎二郎 助教にお願…

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

\課題に対してマイクロ波を試してみたい方へ/オンライン個別相談会

プロセスの脱炭素化及び効率化のキーテクノロジーである”マイクロ波”について、今回は、適用を検討してみ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP