[スポンサーリンク]

化学者のつぶやき

ボリレン

[スポンサーリンク]

 

ご存知の通り、三配位ホウ素化合物は空のp軌道を持つため、通常、ルイス酸・求電子剤として働きます。ところが、以前のつぶやきで紹介したとおり、種々の分子設計により求核剤として働くホウ素化合物が近年報告されています。

汎用性の高い合成方法であることや数々の興味深い反応性を生み出し続けていることから、求核的ホウ素化合物のトップを走っているのは紛れもなくボリルリチウム種 [1]である、と筆者は個人的に思っております。

一方で、ボリルアニオンと並び、ホウ素化学における合成ターゲットとして今も挑戦され続けている化合物として、「ボリレン(Borylene:Boranediylとも呼ぶ)」があります。

 

0420111.gif

 

ボリレンとは原子価が1の中性ホウ素化学種で、ルイス塩基を配位させるとカルベンと等電子構造になります。カルベンが求核性を示すのと同様に、ボリレンもまた求核的ホウ素化合物となり得ること、また空のp軌道を持つことから、新規ホウ素化合物の合成や配位子としての応用が期待できる魅力的な化合物です。
今回、ボリレン、しかもParent Borylene(:BH)に関する研究がAngew誌に報告されていたので、
ざっくりボリレン化学の歴史と共に紹介したいと思います。

ボリレン-遷移金属錯体の合成例は数多く知られていますが [2]、ボリレン自体はその反応性の高さゆえ未だ単離例はありません。
そこで遷移金属錯体以外で、ボリレンに関する論文というものをざっと調べてみました。

まず、フリーなボリレンの反応中間体としての発生~直接観測は今のところ以下の2例だけだと思います [3]。

 

0420112.gif

 

 

また発生~化学的な捕捉実験(もしくは異性化)に関する報告例も少なく [4]、反応機構がはっきりしないので、この内のいくつかは本当にボリレンを中間体としているのか、ラジカル機構や他のルートの可能性も否めないかと。

 

0420113.gif

同様に、Robinsonによって報告されたジボレンもボリレン経由(ボリレンの二量化)と見なせますが、実験的な証拠はありません [5]。

0420114.gif

 

 

一方、ちょっと特殊な例だと、以下の化学種が構造まで取れています [6]。論文タイトルに「ボリレン」と書いてありますが、個人的には、これをボリレンと呼んでいいのかなって気がします(定義にもよるかもしれませんが、これが「ボリレン」なら、たとえばカルボラン中のホウ素もボリレンと言っちゃえるかと。違うかな。。どうなんでしょう)。

 

0420115.gif

 

で、ごく最近、安定ボリレン合成検討に関する論文が、ボリルリチウム種発生の地、東大の野崎先生の研究室から報告されています [7](ちなみに、著者の一人で、先日研究者インタビューでも紹介した山下先生は、この4月から独立されたようです!)。

0420116.gif
結果的には安定ボリレンは得られておらず、中間体もラジカル種である可能性が高いと結論づけていますが、安定ボリレン合成に必要な知見を実験的に明らかにし始めている、重要な研究だと思います。

ざっと見た限り、ボリレン種は中間体としての性質もまだ十分には明らかにされていない、というのが現状だと感じます。

さて、この度、ドイツ・ウルツヴルグ大のBraunschweigらのグループは、Parent Borylene(:BH)の発生に関する論文を報告しています。

P. Bissinger, H. Braunschweig, K. Kraft, T. Kupfer, Angew. Chem. Int. Ed. (2011), doi:10.1002/anie.201007543

発生法は至ってシンプル。ジクロロボランのカルベン付加体をナトリウムナフタレニドで還元するのみ。この:BH種は、FeやRuを含む架橋型の遷移金属錯体として単離例がいくつか報告されていますが [8]、一つのルイス塩基(NHC)のみが配位した例は今回が初めて。(またこの:BH種、化学レーザーとしての応用も期待できる!、とか文献[3]に書いてありましたが、正直よく解りませんでした。。)

04201170.gif

 

最終的に、中間体として発生していると考えられるNHCで安定化された:BH種は、ナフタレンと[1+2]環化付加した二種のジアステレオマーを与えています。

結局は、NHCで安定化しても単離することはできていませんが(と言うか、Robinsonの例を考えると、Me置換NHCでは無理かと思いますが)、生成したジアステレオマー比が1:1であることや、ジアステレオマー間のエネルギー差が小さいこと、その他、実験及び理論的アプローチにより、中間体はラジカルでもイオンでもなくボリレンだ、とのこと。・・・うむ。直接観測はできていないようですが、ボリレンの性質について新たに実験的に解明したと言う点で評価されている論文ですね。

また、全体の流れを見てみると、安定ボリレンへのアプローチとしては()塩基で安定化すること ()大きな置換基を用いて二量化や他の分子との反応を防ぐこと ()ラジカル中間体の発生を抑えること、等が挙げられることがわかりますね。着々と単離成功に近づいているのではないでしょうか。

まぁーそれにしてもBraunschweigは次から次へと、様々なホウ素化合物を作り出してくるもんですね(以前のつぶやき)。


だがしかし!
、記憶に新しい昨年の鈴木章・根岸英一教授ノーベル賞受賞然り、ホウ素を使う有機化学という点で、日本は今もトップランナーの一国であることは間違いないと思います!

また、未開拓であるってことは、同時に多くの夢を描くことができる! ということ。インパクトあるホウ素化合物が日本から誕生することを期待しています。

 

参考文献

  1.  Segawa, Y.; Yamashita, M.; Nozaki, K. Science2006314, 113-115. DOI: 10.1126/science.1131914
  2. H. Braunschweig, R. D. Dewhurst, A. Schneider, Chem. Rev. 2010, 110, 3924. DOI: 10.1021/cr900333n
  3. (a) J. Clark, M. Konopka, L.-M. Zang, E. R. Grant, Chem. Phys. Lett. 2001, 340, 45. doi:10.1016/S0009-2614(01)00348-7 (b) H. F. Bettinger, J. Am. Chem. Soc. 2006, 128, 2534. DOI: 10.1021/ja0548642
  4.  (a) S. M. Vanderkerk, J. C. Roos-Venekamp, A. J. M. Vanbeijnen, G. J. M. Vanderkerk, Polyhedron 1983, 2, 1337. DOI:10.1016/S0277-5387(00)84396-X (b) M. Ito, N. Tokitoh, T. Kawashima, R. Okazaki, Tetrahedron Lett. 1999, 40, 5557. DOI:10.1016/S0040-4039(99)01036-9 (c) W. J. Grigsby, P. P. Power, J. Am. Chem. Soc. 1996, 118, 7981. DOI: 10.1021/ja960918j
  5. Yuzhong Wang, Brandon Quillian, Pingrong Wei, Chaitanya S. Wannere, Yaoming Xie, R. Bruce King, Henry F. Schaefer, III, Paul v. R. Schleyer, and Gregory H. Robinson, J. Am. Chem. Soc., 2007, 129, 12412. DOI: 10.1021/ja075932i
  6. Peter Greiwe, Alexandra Bethauser, Hans Pritzkow, Thorsten Kuhler, Peter Jutzi, Walter Siebert, Eur. J. Inorg. Chem. 2000, 9, 1927, DOI: 10.1002/1099-0682(200009)
  7. M. Yamashita, Y. Aramaki, K. Nozaki, New J. Chem. 2010, 34, 1774. DOI: 10.1039/C0NJ00363H
  8. K. Geetharani, Shubhankar Kumar Bose, Babu Varghese, Sundargopal Ghosh, Chem. Eur. J. 2010, 16, 11357. DOI: 10.1002/chem.201001208

 

関連記事

  1. 第5回ICReDD国際シンポジウム開催のお知らせ
  2. ケムステ版・ノーベル化学賞候補者リスト【2025年版・10/08…
  3. 10手で陥落!(+)-pepluanol Aの全合成
  4. ゲノムDNA中の各種修飾塩基を測定する発光タンパク質構築法を開発…
  5. むずかしいことば?
  6. トンネル構造をもつマンガン酸化物超微粒子触媒を合成
  7. 広範な反応性代謝物を検出する蛍光トラッピング剤 〜毒性の黒幕を捕…
  8. 【書籍】機器分析ハンドブック2 高分子・分離分析編

注目情報

ピックアップ記事

  1. マイクロ波プロセスの工業化 〜環境/化学・ヘルスケア・電材領域での展開と効果〜(1)
  2. アルコールをアルキル化剤に!ヘテロ芳香環のC-Hアルキル化
  3. 細胞内の温度をあるがままの状態で測定する新手法の開発 ~「水分子」を温度計に~
  4. バイオマス燃料・化学品の合成と触媒の技術動向【終了】
  5. ナザロフ環化 Nazarov Cyclization
  6. 免疫/アレルギーーChemical Times特集より
  7. キラルシリカを“微小らせん石英セル”として利用した円偏光発光制御技術の開発
  8. 大学院生になっても宿題に追われるってどないなんだが?【アメリカでPh.D.を取る–コースワークの巻–】
  9. スチュアート・ライス Stuart A. Rice
  10. NMR解析ソフト。まとめてみた。①

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2011年4月
 123
45678910
11121314151617
18192021222324
252627282930  

注目情報

最新記事

異方的成長による量子ニードルの合成を実現

第693回のスポットライトリサーチは、東京大学大学院理学系研究科(佃研究室)の髙野慎二郎 助教にお願…

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

\課題に対してマイクロ波を試してみたい方へ/オンライン個別相談会

プロセスの脱炭素化及び効率化のキーテクノロジーである”マイクロ波”について、今回は、適用を検討してみ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP