[スポンサーリンク]

化学者のつぶやき

ボリレン

 

ご存知の通り、三配位ホウ素化合物は空のp軌道を持つため、通常、ルイス酸・求電子剤として働きます。ところが、以前のつぶやきで紹介したとおり、種々の分子設計により求核剤として働くホウ素化合物が近年報告されています。

汎用性の高い合成方法であることや数々の興味深い反応性を生み出し続けていることから、求核的ホウ素化合物のトップを走っているのは紛れもなくボリルリチウム種 [1]である、と筆者は個人的に思っております。

一方で、ボリルアニオンと並び、ホウ素化学における合成ターゲットとして今も挑戦され続けている化合物として、「ボリレン(Borylene:Boranediylとも呼ぶ)」があります。

 

0420111.gif

 

ボリレンとは原子価が1の中性ホウ素化学種で、ルイス塩基を配位させるとカルベンと等電子構造になります。カルベンが求核性を示すのと同様に、ボリレンもまた求核的ホウ素化合物となり得ること、また空のp軌道を持つことから、新規ホウ素化合物の合成や配位子としての応用が期待できる魅力的な化合物です。
今回、ボリレン、しかもParent Borylene(:BH)に関する研究がAngew誌に報告されていたので、
ざっくりボリレン化学の歴史と共に紹介したいと思います。

ボリレン-遷移金属錯体の合成例は数多く知られていますが [2]、ボリレン自体はその反応性の高さゆえ未だ単離例はありません。
そこで遷移金属錯体以外で、ボリレンに関する論文というものをざっと調べてみました。

まず、フリーなボリレンの反応中間体としての発生~直接観測は今のところ以下の2例だけだと思います [3]。

 

0420112.gif

 

 

また発生~化学的な捕捉実験(もしくは異性化)に関する報告例も少なく [4]、反応機構がはっきりしないので、この内のいくつかは本当にボリレンを中間体としているのか、ラジカル機構や他のルートの可能性も否めないかと。

 

0420113.gif

同様に、Robinsonによって報告されたジボレンもボリレン経由(ボリレンの二量化)と見なせますが、実験的な証拠はありません [5]。

0420114.gif

 

 

一方、ちょっと特殊な例だと、以下の化学種が構造まで取れています [6]。論文タイトルに「ボリレン」と書いてありますが、個人的には、これをボリレンと呼んでいいのかなって気がします(定義にもよるかもしれませんが、これが「ボリレン」なら、たとえばカルボラン中のホウ素もボリレンと言っちゃえるかと。違うかな。。どうなんでしょう)。

 

0420115.gif

 

で、ごく最近、安定ボリレン合成検討に関する論文が、ボリルリチウム種発生の地、東大の野崎先生の研究室から報告されています [7](ちなみに、著者の一人で、先日研究者インタビューでも紹介した山下先生は、この4月から独立されたようです!)。

0420116.gif
結果的には安定ボリレンは得られておらず、中間体もラジカル種である可能性が高いと結論づけていますが、安定ボリレン合成に必要な知見を実験的に明らかにし始めている、重要な研究だと思います。

ざっと見た限り、ボリレン種は中間体としての性質もまだ十分には明らかにされていない、というのが現状だと感じます。

さて、この度、ドイツ・ウルツヴルグ大のBraunschweigらのグループは、Parent Borylene(:BH)の発生に関する論文を報告しています。

P. Bissinger, H. Braunschweig, K. Kraft, T. Kupfer, Angew. Chem. Int. Ed. (2011), doi:10.1002/anie.201007543

発生法は至ってシンプル。ジクロロボランのカルベン付加体をナトリウムナフタレニドで還元するのみ。この:BH種は、FeやRuを含む架橋型の遷移金属錯体として単離例がいくつか報告されていますが [8]、一つのルイス塩基(NHC)のみが配位した例は今回が初めて。(またこの:BH種、化学レーザーとしての応用も期待できる!、とか文献[3]に書いてありましたが、正直よく解りませんでした。。)

04201170.gif

 

最終的に、中間体として発生していると考えられるNHCで安定化された:BH種は、ナフタレンと[1+2]環化付加した二種のジアステレオマーを与えています。

結局は、NHCで安定化しても単離することはできていませんが(と言うか、Robinsonの例を考えると、Me置換NHCでは無理かと思いますが)、生成したジアステレオマー比が1:1であることや、ジアステレオマー間のエネルギー差が小さいこと、その他、実験及び理論的アプローチにより、中間体はラジカルでもイオンでもなくボリレンだ、とのこと。・・・うむ。直接観測はできていないようですが、ボリレンの性質について新たに実験的に解明したと言う点で評価されている論文ですね。

また、全体の流れを見てみると、安定ボリレンへのアプローチとしては()塩基で安定化すること ()大きな置換基を用いて二量化や他の分子との反応を防ぐこと ()ラジカル中間体の発生を抑えること、等が挙げられることがわかりますね。着々と単離成功に近づいているのではないでしょうか。

まぁーそれにしてもBraunschweigは次から次へと、様々なホウ素化合物を作り出してくるもんですね(以前のつぶやき)。


だがしかし!
、記憶に新しい昨年の鈴木章・根岸英一教授ノーベル賞受賞然り、ホウ素を使う有機化学という点で、日本は今もトップランナーの一国であることは間違いないと思います!

また、未開拓であるってことは、同時に多くの夢を描くことができる! ということ。インパクトあるホウ素化合物が日本から誕生することを期待しています。

 

参考文献

  1.  Segawa, Y.; Yamashita, M.; Nozaki, K. Science2006314, 113-115. DOI: 10.1126/science.1131914
  2. H. Braunschweig, R. D. Dewhurst, A. Schneider, Chem. Rev. 2010, 110, 3924. DOI: 10.1021/cr900333n
  3. (a) J. Clark, M. Konopka, L.-M. Zang, E. R. Grant, Chem. Phys. Lett. 2001, 340, 45. doi:10.1016/S0009-2614(01)00348-7 (b) H. F. Bettinger, J. Am. Chem. Soc. 2006, 128, 2534. DOI: 10.1021/ja0548642
  4.  (a) S. M. Vanderkerk, J. C. Roos-Venekamp, A. J. M. Vanbeijnen, G. J. M. Vanderkerk, Polyhedron 1983, 2, 1337. DOI:10.1016/S0277-5387(00)84396-X (b) M. Ito, N. Tokitoh, T. Kawashima, R. Okazaki, Tetrahedron Lett. 1999, 40, 5557. DOI:10.1016/S0040-4039(99)01036-9 (c) W. J. Grigsby, P. P. Power, J. Am. Chem. Soc. 1996, 118, 7981. DOI: 10.1021/ja960918j
  5. Yuzhong Wang, Brandon Quillian, Pingrong Wei, Chaitanya S. Wannere, Yaoming Xie, R. Bruce King, Henry F. Schaefer, III, Paul v. R. Schleyer, and Gregory H. Robinson, J. Am. Chem. Soc., 2007, 129, 12412. DOI: 10.1021/ja075932i
  6. Peter Greiwe, Alexandra Bethauser, Hans Pritzkow, Thorsten Kuhler, Peter Jutzi, Walter Siebert, Eur. J. Inorg. Chem. 2000, 9, 1927, DOI: 10.1002/1099-0682(200009)
  7. M. Yamashita, Y. Aramaki, K. Nozaki, New J. Chem. 2010, 34, 1774. DOI: 10.1039/C0NJ00363H
  8. K. Geetharani, Shubhankar Kumar Bose, Babu Varghese, Sundargopal Ghosh, Chem. Eur. J. 2010, 16, 11357. DOI: 10.1002/chem.201001208

 

The following two tabs change content below.
StarryNight

StarryNight

関連記事

  1. 1と2の中間のハナシ
  2. 若手研究者vsノーベル賞受賞者 【化学者とは?!編】
  3. Macユーザに朗報?ChemDrawバージョンアップ
  4. クリック反応の反応機構が覆される
  5. アイルランドに行ってきた②
  6. 電子デバイス製造技術 ーChemical Times特集より
  7. ヒドロアシル化界のドンによる巧妙なジアステレオ選択性制御
  8. 博士課程学生の奨学金情報

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 独バイエル、世界全体で6100人を削減へ
  2. サイエンス・ダイレクトがリニューアル
  3. ビタミンB1塩酸塩を触媒とするぎ酸アミド誘導体の合成
  4. クリック反応の反応機構が覆される
  5. 近赤外光を青色の光に変換するアップコンバージョン-ナノ粒子の開発
  6. スイス連邦工科大ジーベーガー教授2007年ケーバー賞を受賞
  7. トリフルオロメタンスルホン酸ベンゾイル:Benzoyl Trifluoromethanesulfonate
  8. ACD/ChemSketch Freeware 12.0
  9. すぐできる 量子化学計算ビギナーズマニュアル
  10. ジブロモイソシアヌル酸:Dibromoisocyanuric Acid

関連商品

注目情報

注目情報

最新記事

NMRの基礎知識【測定・解析編】

本シリーズでは、NMRの原理から実例までをできるだけ分かりやすくご紹介したいと思います。前回の【原理…

「人工知能時代」と人間の仕事

デジタル技術の進歩は著しく、特に、人工知能(AI)と呼ばれる機械学習システムの進歩は、世界の労働者の…

特定の刺激でタンパク質放出速度を制御できるスマート超分子ヒドロゲルの開発

第134回のスポットライトリサーチは、京都大学大学院 工学研究科 合成·生物化学専攻 浜地研究室の重…

有機合成化学協会誌2018年1月号:光学活性イミダゾリジン含有ピンサー金属錯体・直截カルコゲン化・インジウム触媒・曲面π構造・タンパク質チオエステル合成

有機合成化学協会が発行する有機合成化学協会誌、2018年1月号が昨日オンライン公開されました。…

アミン化合物をワンポットで簡便に合成 -新規還元的アミノ化触媒-:関東化学

アミン化合物は医薬品、農薬などの生理活性物質をはじめ、ポリマーなどの工業材料に至るまで様々な化学物質…

独自の有機不斉触媒反応を用いた (—)-himalensine Aの全合成

近年単離されたアルカロイド(—)-himalensine Aの全合成に初めて成功した。独自開発した二…

Chem-Station Twitter

PAGE TOP