[スポンサーリンク]

ケムステしごと

蛍光標識で定性的・定量的な解析を可能に:Dansyl-GSH

[スポンサーリンク]

反応性代謝物の存在を調べたい。代謝化学の実験をしていれば、ほとんどの人がそう思うのではないでしょうか?その反応性代謝物の存在はDansyl-GSHを使うことで、簡単に調べることが可能です。

分子イメージング

創薬研究の世界では、今から世に送り出そうとする薬が生体に悪影響を与えないよう細心の注意を払う必要があります。薬そのものが毒として働くだけでなく、薬によって代謝された生成物が毒として働くこともあるため、代謝生成物についても毒性を調べる必要があります。

例えば、代謝反応の過程で毒性作用を持つ反応性代謝生成物の量を調べたり、あるいは、体内に多く存在するグルタチオン(GSH)が代謝によって生じる生成物に結合して代謝を止めたり、別の反応をしないかどうか確認することが重要です。

この代謝生成物の量や構造を調べる一つの手段として、生成物に目印をつけて識別する方法があります(図1)。

例えば代謝生成物にグルタチオンが結合するか否かを調べる方法として、

(a)代謝生成物にRI標識が移るような試薬を使い、グルタチオンが結合した代謝生成物のRI標識によって反応の進行を確認、LC/MSで代謝成物の構造を予測する方法

(b)代謝生成物に蛍光標識がついたグルタチオンを反応させて、蛍光検出器を持つHPLCなどを用いて反応の進行と生成物を確認する方法

等があります。

図1. RI標識(a)による識別法と蛍光標識(b)による識別法の模式図

グルタチオン自身も吸収を持つため、標識が無くても検出することは可能です。しかし、検出感度は決して高くありません。そのため、上述のようにRIや蛍光標識を使う方法が多く取られています。このような方法は、創薬だけでなく化学、生化学分野では多く使われています。

RI標識と蛍光標識

RIは何といってもamol/Lでも検出で可能など、検出感度が高いこと(低濃度でも検出できる(検出限界))ことが最大のメリットですが、放射性崩壊により時間とともにシグナルが弱くなり続ける点、取り扱うために特別な施設が必要なことや放射性廃棄物の処理がやや面倒なこともデメリットに挙げられます。また、RIを標識にして代謝生成物を検出することができますが、生成物の同定にはLC/MSを用いた分析が必要です。たとえ生成物を同定しても、定量ができないことはデメリットとして挙げられるでしょう。

一方で、蛍光標識を使うメリットはRI試薬に比べて蛍光試薬が安価なことがあげられます(図2)。また、蛍光検出器をもつHPLCを用いれば検出と同時に反応生成物の定量も行うことができます。しかし、RIに比べて検出感度が高くないことがデメリットとして挙げられます(表1)。

図2. 代表的な蛍光基の構造式

表1. 代表的な蛍光基の吸収波長と蛍光波長

Dansyl-GSH

ここでご紹介するDansyl-GSHという製品は、Dansyl基という蛍光標識を持つグルタチオンで、先に述べたように代謝生成物と反応させてその量を調べたり、同定を行ったりすることが可能です(図3)。

図3. Dansyl-GSH

さらに、Dansyl-GSHの特徴として光の吸収波長と蛍光波長の差、つまりストークスシフトが大きいことがあげられます(表2)。

例えば、蛍光標識として使われるAMCA(クマリン)のストークスシフトは87nm, TAMRA(ローダミン)では27nmととても小さく、照射波長を蛍光波長として検出してしまうリスクがありますが、Dansyl-GSHは185nmとシフトが大きく、そのリスクを回避できます。そのため、比較的高い検出感度を持つといえます。

また、蛍光基の大きさについてもDansylはフルオロセインやTAMRAに比べて小さく立体障害になりにくいため、反応が阻害される可能性を抑制することができます。照射波長が340 nm程度と、短波長なのでin vivoの実験にはやや向かない可能性がありますが、in vitroの実験では比較的簡便に取り扱いができ定量可能である非常に実用的な試薬です。

表2. 代表的な蛍光基のお吸収波長と蛍光波長

In vitroでグルタチオンが関与するような代謝生成物についての実験を考えておられる方におすすめです。

商品とお問い合わせ

渡辺化学工業株式会社
〒730‐0853 広島市中区堺町2丁目2番5号
TEL:(082) 231‐0540 FAX:(082) 231‐1451
ホームページ:http://www.watanabechem.co.jp
E‐mail: sales@watanabechem.co.jp

*本記事は渡辺化学工業様からの寄稿記事です。

関連リンク

Avatar photo

webmaster

投稿者の記事一覧

Chem-Station代表。早稲田大学理工学術院教授。専門は有機化学。主に有機合成化学。分子レベルでモノを自由自在につくる、最小の構造物設計の匠となるため分子設計化学を確立したいと考えている。趣味は旅行(日本は全県制覇、海外はまだ20カ国ほど)、ドライブ、そしてすべての化学情報をインターネットで発信できるポータルサイトを作ること。

関連記事

  1. アルキン来ぬと目にはさやかに見えねども
  2. 化学産業における規格の意義
  3. カルボン酸だけを触媒的にエノラート化する
  4. 本当の天然物はどれ?
  5. 有機ナノ結晶からの「核偏極リレー」により液体の水を初めて高偏極化…
  6. 人を器用にするDNAーナノ化学研究より
  7. 研究室でDIY!~エバポ用真空制御装置をつくろう~ ⑤ 最終回
  8. 反応中間体の追跡から新反応をみつける

注目情報

ピックアップ記事

  1. 生体内での細胞選択的治療を可能とする糖鎖付加人工金属酵素
  2. ねじれがあるアミド
  3. 有機合成化学協会誌2020年3月号:電子欠損性ホウ素化合物・不斉Diels-Alder反応・ホヤの精子活性化誘引物質・選択的グリコシル化反応・固定化二元金属ナノ粒子触媒・連続フロー反応
  4. 指向性進化法 Directed Evolution
  5. 【著者インタビュー動画あり!】有機化学1000本ノック スペクトル解析編
  6. 二次元物質の科学 :グラフェンなどの分子シートが生み出す新世界
  7. 計算化学記事まとめ
  8. SciFinder Future Leaders in Chemistry 2015に参加しよう!
  9. 2013年(第29回)日本国際賞 受賞記念講演会
  10. 始めよう!3Dプリンターを使った実験器具DIY:3D CADを使った設計編その2

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年2月
 123
45678910
11121314151617
18192021222324
25262728  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP