[スポンサーリンク]

ケムステしごと

蛍光標識で定性的・定量的な解析を可能に:Dansyl-GSH

[スポンサーリンク]

反応性代謝物の存在を調べたい。代謝化学の実験をしていれば、ほとんどの人がそう思うのではないでしょうか?その反応性代謝物の存在はDansyl-GSHを使うことで、簡単に調べることが可能です。

分子イメージング

創薬研究の世界では、今から世に送り出そうとする薬が生体に悪影響を与えないよう細心の注意を払う必要があります。薬そのものが毒として働くだけでなく、薬によって代謝された生成物が毒として働くこともあるため、代謝生成物についても毒性を調べる必要があります。

例えば、代謝反応の過程で毒性作用を持つ反応性代謝生成物の量を調べたり、あるいは、体内に多く存在するグルタチオン(GSH)が代謝によって生じる生成物に結合して代謝を止めたり、別の反応をしないかどうか確認することが重要です。

この代謝生成物の量や構造を調べる一つの手段として、生成物に目印をつけて識別する方法があります(図1)。

例えば代謝生成物にグルタチオンが結合するか否かを調べる方法として、

(a)代謝生成物にRI標識が移るような試薬を使い、グルタチオンが結合した代謝生成物のRI標識によって反応の進行を確認、LC/MSで代謝成物の構造を予測する方法

(b)代謝生成物に蛍光標識がついたグルタチオンを反応させて、蛍光検出器を持つHPLCなどを用いて反応の進行と生成物を確認する方法

等があります。

図1. RI標識(a)による識別法と蛍光標識(b)による識別法の模式図

グルタチオン自身も吸収を持つため、標識が無くても検出することは可能です。しかし、検出感度は決して高くありません。そのため、上述のようにRIや蛍光標識を使う方法が多く取られています。このような方法は、創薬だけでなく化学、生化学分野では多く使われています。

RI標識と蛍光標識

RIは何といってもamol/Lでも検出で可能など、検出感度が高いこと(低濃度でも検出できる(検出限界))ことが最大のメリットですが、放射性崩壊により時間とともにシグナルが弱くなり続ける点、取り扱うために特別な施設が必要なことや放射性廃棄物の処理がやや面倒なこともデメリットに挙げられます。また、RIを標識にして代謝生成物を検出することができますが、生成物の同定にはLC/MSを用いた分析が必要です。たとえ生成物を同定しても、定量ができないことはデメリットとして挙げられるでしょう。

一方で、蛍光標識を使うメリットはRI試薬に比べて蛍光試薬が安価なことがあげられます(図2)。また、蛍光検出器をもつHPLCを用いれば検出と同時に反応生成物の定量も行うことができます。しかし、RIに比べて検出感度が高くないことがデメリットとして挙げられます(表1)。

図2. 代表的な蛍光基の構造式

表1. 代表的な蛍光基の吸収波長と蛍光波長

Dansyl-GSH

ここでご紹介するDansyl-GSHという製品は、Dansyl基という蛍光標識を持つグルタチオンで、先に述べたように代謝生成物と反応させてその量を調べたり、同定を行ったりすることが可能です(図3)。

図3. Dansyl-GSH

さらに、Dansyl-GSHの特徴として光の吸収波長と蛍光波長の差、つまりストークスシフトが大きいことがあげられます(表2)。

例えば、蛍光標識として使われるAMCA(クマリン)のストークスシフトは87nm, TAMRA(ローダミン)では27nmととても小さく、照射波長を蛍光波長として検出してしまうリスクがありますが、Dansyl-GSHは185nmとシフトが大きく、そのリスクを回避できます。そのため、比較的高い検出感度を持つといえます。

また、蛍光基の大きさについてもDansylはフルオロセインやTAMRAに比べて小さく立体障害になりにくいため、反応が阻害される可能性を抑制することができます。照射波長が340 nm程度と、短波長なのでin vivoの実験にはやや向かない可能性がありますが、in vitroの実験では比較的簡便に取り扱いができ定量可能である非常に実用的な試薬です。

表2. 代表的な蛍光基のお吸収波長と蛍光波長

In vitroでグルタチオンが関与するような代謝生成物についての実験を考えておられる方におすすめです。

商品とお問い合わせ

渡辺化学工業株式会社
〒730‐0853 広島市中区堺町2丁目2番5号
TEL:(082) 231‐0540 FAX:(082) 231‐1451
ホームページ:http://www.watanabechem.co.jp
E‐mail: sales@watanabechem.co.jp

*本記事は渡辺化学工業様からの寄稿記事です。

関連リンク

webmaster

webmaster

投稿者の記事一覧

Chem-Station代表。早稲田大学理工学術院教授。専門は有機化学。主に有機合成化学。分子レベルでモノを自由自在につくる、最小の構造物設計の匠となるため分子設計化学を確立したいと考えている。趣味は旅行(日本は全県制覇、海外はまだ20カ国ほど)、ドライブ、そしてすべての化学情報をインターネットで発信できるポータルサイトを作ること。

関連記事

  1. わずかな末端修飾で粘度が1万倍も変わる高分子
  2. 室温でアルカンから水素を放出させる紫外光ハイブリッド触媒系
  3. 史上最も不運な化学者?
  4. 含『鉛』芳香族化合物ジリチオプルンボールの合成に成功!①
  5. イボレノリドAの単離から全合成まで
  6. ケムステVシンポ「最先端有機化学」開催報告(前編)
  7. STAP細胞問題から見えた市民と科学者の乖離ー後編
  8. 東レ先端材料シンポジウム2011に行ってきました

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. E-mail Alertを活用しよう!
  2. JSRとはどんな会社?-1
  3. ベン・フェリンガ Ben L. Feringa
  4. アルカロイドの科学 生物活性を生みだす物質の探索から創薬の実際まで
  5. トリクロロアニソール (2,4,6-trichloroanisole)
  6. アイディア創出のインセンティブ~KAKENデータベースの利用法
  7. SigmaAldrichフッ素化合物30%OFFキャンペーン
  8. ファヴォルスキー転位 Favorskii Rearrangement
  9. 新たな環状スズ化合物の合成とダブルカップリングへの応用
  10. 近況報告PartIV

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

化学系必見!お土産・グッズ・アイテム特集

bergです。今回は化学系や材料系の学生さんや研究者の方々がつい手に取りたくなりそうなグッズなどを筆…

危険物取扱者:記事まとめ

世の中には様々な化学系の資格があり、化学系企業で働いていると資格を取る必要に迫られる機会があります。…

化学者のためのエレクトロニクス入門③ ~半導体業界で活躍する化学メーカー編~

bergです。化学者のためのエレクトロニクス入門のシリーズも3回目を迎えました。前回は電子回路を大き…

第101回―「高分子ナノ構造の精密合成」Rachel O’Reilly教授

第101回の海外化学者インタビューは、レイチェル・オライリー教授です。ケンブリッジ大学化学科に所属(…

大学院生になっても宿題に追われるってどないなんだが?【アメリカでPh.D.を取る–コースワークの巻–】

アメリカでの PhD 課程の1年目には、多くの大学院の場合, 研究だけでなく、講義の受講やTAの義務…

島津製作所 創業記念資料館

島津製作所の創業から現在に至るまでの歴史を示す資料館で、数々の発明品が展示されている。第10回化学遺…

研究テーマ変更奮闘記 – PhD留学(後編)

前回の記事では、私がPhD留学を始めた際のテーマ決めの流れや、その後テーマ変更を考え始めてからの教授…

ジョン・ケンドリュー John C. Kendrew

ジョン・コウデリー・ケンドリュー(John Cowdery Kendrew、1917年3月24日-1…

Chem-Station Twitter

PAGE TOP