[スポンサーリンク]

ケムステしごと

蛍光標識で定性的・定量的な解析を可能に:Dansyl-GSH

[スポンサーリンク]

反応性代謝物の存在を調べたい。代謝化学の実験をしていれば、ほとんどの人がそう思うのではないでしょうか?その反応性代謝物の存在はDansyl-GSHを使うことで、簡単に調べることが可能です。

分子イメージング

創薬研究の世界では、今から世に送り出そうとする薬が生体に悪影響を与えないよう細心の注意を払う必要があります。薬そのものが毒として働くだけでなく、薬によって代謝された生成物が毒として働くこともあるため、代謝生成物についても毒性を調べる必要があります。

例えば、代謝反応の過程で毒性作用を持つ反応性代謝生成物の量を調べたり、あるいは、体内に多く存在するグルタチオン(GSH)が代謝によって生じる生成物に結合して代謝を止めたり、別の反応をしないかどうか確認することが重要です。

この代謝生成物の量や構造を調べる一つの手段として、生成物に目印をつけて識別する方法があります(図1)。

例えば代謝生成物にグルタチオンが結合するか否かを調べる方法として、

(a)代謝生成物にRI標識が移るような試薬を使い、グルタチオンが結合した代謝生成物のRI標識によって反応の進行を確認、LC/MSで代謝成物の構造を予測する方法

(b)代謝生成物に蛍光標識がついたグルタチオンを反応させて、蛍光検出器を持つHPLCなどを用いて反応の進行と生成物を確認する方法

等があります。

図1. RI標識(a)による識別法と蛍光標識(b)による識別法の模式図

グルタチオン自身も吸収を持つため、標識が無くても検出することは可能です。しかし、検出感度は決して高くありません。そのため、上述のようにRIや蛍光標識を使う方法が多く取られています。このような方法は、創薬だけでなく化学、生化学分野では多く使われています。

RI標識と蛍光標識

RIは何といってもamol/Lでも検出で可能など、検出感度が高いこと(低濃度でも検出できる(検出限界))ことが最大のメリットですが、放射性崩壊により時間とともにシグナルが弱くなり続ける点、取り扱うために特別な施設が必要なことや放射性廃棄物の処理がやや面倒なこともデメリットに挙げられます。また、RIを標識にして代謝生成物を検出することができますが、生成物の同定にはLC/MSを用いた分析が必要です。たとえ生成物を同定しても、定量ができないことはデメリットとして挙げられるでしょう。

一方で、蛍光標識を使うメリットはRI試薬に比べて蛍光試薬が安価なことがあげられます(図2)。また、蛍光検出器をもつHPLCを用いれば検出と同時に反応生成物の定量も行うことができます。しかし、RIに比べて検出感度が高くないことがデメリットとして挙げられます(表1)。

図2. 代表的な蛍光基の構造式

表1. 代表的な蛍光基の吸収波長と蛍光波長

Dansyl-GSH

ここでご紹介するDansyl-GSHという製品は、Dansyl基という蛍光標識を持つグルタチオンで、先に述べたように代謝生成物と反応させてその量を調べたり、同定を行ったりすることが可能です(図3)。

図3. Dansyl-GSH

さらに、Dansyl-GSHの特徴として光の吸収波長と蛍光波長の差、つまりストークスシフトが大きいことがあげられます(表2)。

例えば、蛍光標識として使われるAMCA(クマリン)のストークスシフトは87nm, TAMRA(ローダミン)では27nmととても小さく、照射波長を蛍光波長として検出してしまうリスクがありますが、Dansyl-GSHは185nmとシフトが大きく、そのリスクを回避できます。そのため、比較的高い検出感度を持つといえます。

また、蛍光基の大きさについてもDansylはフルオロセインやTAMRAに比べて小さく立体障害になりにくいため、反応が阻害される可能性を抑制することができます。照射波長が340 nm程度と、短波長なのでin vivoの実験にはやや向かない可能性がありますが、in vitroの実験では比較的簡便に取り扱いができ定量可能である非常に実用的な試薬です。

表2. 代表的な蛍光基のお吸収波長と蛍光波長

In vitroでグルタチオンが関与するような代謝生成物についての実験を考えておられる方におすすめです。

商品とお問い合わせ

渡辺化学工業株式会社
〒730‐0853 広島市中区堺町2丁目2番5号
TEL:(082) 231‐0540 FAX:(082) 231‐1451
ホームページ:http://www.watanabechem.co.jp
E‐mail: sales@watanabechem.co.jp

*本記事は渡辺化学工業様からの寄稿記事です。

関連リンク

The following two tabs change content below.
webmaster
Chem-Station代表。早稲田大学理工学術院教授。専門は有機化学。主に有機合成化学。分子レベルでモノを自由自在につくる、最小の構造物設計の匠となるため分子設計化学を確立したいと考えている。趣味は旅行(日本は全県制覇、海外はまだ20カ国ほど)、ドライブ、そしてすべての化学情報をインターネットで発信できるポータルサイトを作ること。

関連記事

  1. γ-チューブリン特異的阻害剤の創製
  2. 芳香族ボロン酸でCatellani反応
  3. 温故知新ケミストリー:シクロプロペニルカチオンを活用した有機合成…
  4. 【追悼企画】世のためになる有機合成化学ー松井正直教授
  5. 化学Webギャラリー@Flickr 【Part2】
  6. 橋頭位二重結合を有するケイ素化合物の合成と性質解明
  7. 東京理科大学みらい研究室にお邪魔してきました
  8. 反応機構を書いてみよう!~電子の矢印講座・その2~

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 単分子レベルでの金属―分子接合界面構造の解明
  2. エタール反応 Etard Reaction
  3. 有機テルル媒介リビングラジカル重合 Organotellurium-mediated Living Radical Polymerization (TERP)
  4. 官能基「プロパルギル基」導入の道
  5. 大型リチウムイオン電池の基礎知識【終了】
  6. 【朗報】HGS分子構造模型が入手可能に!
  7. 硤合 憲三 Kenso Soai
  8. トレハロースが癒着防止 手術に有効、東大など発表
  9. アスピリンの梗塞予防検証 慶応大、1万人臨床試験
  10. 日本プロセス化学会2005サマーシンポジウム

関連商品

注目情報

注目情報

最新記事

有機合成化学協会誌2019年11月号:英文版特集号

有機合成化学協会が発行する有機合成化学協会誌、2019年11月号がオンライン公開されました。…

製品開発職を検討する上でおさえたい3つのポイント

基礎研究と製品開発は、目的や役割がそれぞれ異なります。しかし、求人情報の応募要件を見てみると「〇〇の…

二刀流のホスフィン触媒によるアトロプ選択的合成法

不斉付加環化反応による新奇アリールナフトキノン合成法が報告された。2つの機能を有する不斉ホスフィン触…

ヒドロゲルの新たな力学強度・温度応答性制御法

第230回のスポットライトリサーチは、東京農工大学大学院工学府(村岡研究室)・石田敦也さんにお願い致…

光誘導アシルラジカルのミニスキ型ヒドロキシアルキル化反応

可視光照射条件下でのアジン類のミニスキ型ヒドロキシアルキル化反応が開発された。官能基許容性が高いため…

イオン交換が分子間電荷移動を駆動する協奏的現象の発見

第229回のスポットライトリサーチは、東京大学大学院 新領域創成科学研究科(竹谷・岡本研究室)・山下…

Chem-Station Twitter

PAGE TOP