[スポンサーリンク]

化学者のつぶやき

超原子価臭素試薬を用いた脂肪族C-Hアミノ化反応

 

Highly Regioselective Amination of Unactivated Alkanes by Hypervalent Sulfonylimino-λ3-Bromane.
Ochiai, M.; Miyamoto, K.; Kaneaki, T.; Hayashi, S.; Nakanishi, W. Science 2011, 332, 448-451.
doi:10.1126/science.1201686


筆者が連休中に遊び呆けていたせいで論文の発表から二週間強も過ぎてしまいましたが、ケムステTwitterでも「つるっつるやぞ!(一部抜粋脚色)」とつぶやかれていた脂肪族C-H結合のアミノ化反応が超原子価臭素試薬を用いることで遷移金属触媒無しで進行するという徳島大学薬学部の落合正仁教授らの論文が、先月の終わりにScienceで報告されました。[1]

超原子価ヨウ素試薬と聞けば、クラシック(と言っても1983年の報告なのですが)なところでデス・マーチン酸化、最近ならPd触媒系で頻繁に酸化剤として用いられているヨードベンゼンジアセタートや、Togniらによるトリフルオロメチル化試薬[2]、ごく最近では石原らによる北反応[3]など、使ったことはないという人にも割りと一般的な試薬と言えるのではないでしょうか。

しかし今回登場した、スルフォニルイミノブロマン(sulfonylimino bromane)は超原子価臭素によるナイトレノイド(nitrenoid)。落合らのグループでは、以前から超原子価ヨウ素超原子価臭素、そして超原子価塩素試薬に関する研究に取り組んでおり、通常は触媒として遷移金属錯体が必要な反応をメタルフリーで成し遂げるという報告をしています。[4]

さて、筆者はC-Hアミノ化と言えばDuBoisWhiteらの報告がすぐに思い浮かぶのですが、いずれも二核Rh錯体もしくはPdを必要としていますし、何より分子内反応であったり、アリル位での反応であったりしました[5][6]。(超原子価ヨウ素試薬と銀触媒を用いたラジカル機構で進む脂肪族C-Hアミノ化の報告例あり[7])。本反応は分子間反応であり、基質は完全に脂肪族、何の官能基も無い、まさしくトゥルッットゥル!の炭水化物です。ヨウ素と比べて酸化電位が高い臭素の特性故に、ナイトレノイド(nitrenoid)から臭素が速やかに還元的に脱離して1価の臭素となることが高い反応性の鍵となっています。選択性は三級炭素が圧倒的に高く(配座による例外あり)、次に二級炭素が良く反応します(一級炭素は反応せず)。

試薬の合成は、アルゴン雰囲気下、氷浴温度で試薬を混ぜたら室温で10分攪拌。次に溶媒を飛ばしてからヘキサンで再沈殿/デカンテーションというシンプルなもの。



再結晶後は無色の板状結晶となって得られるこの試薬は、アルゴン雰囲気下冷蔵庫で少なくとも二ヶ月は安定らしく、超原子価ヨウ素試薬で時折問題となる凝集体の不溶化も起こらず(注)塩化メチレン、アセトニトリル等の溶媒によく溶けるようです。

また、過剰量のヘキサフルオロイソプロパノール(HFIP)を添加することで、超原子価臭素試薬の二量体形成が阻害され、試薬が潰れる速度を遅くし収率の向上が見られるとのことです。

2015-09-24_18-56-16

 

先述の酸化電位のせいで、ヨウ素よりも臭素、臭素よりもさらに塩素の方が高原子価を取りにくい一方、それ故に還元されやすく高活性な試薬になるという考え方はとても納得の行く物だと思います。超原子価塩素ナイトレノイドの報告、ゆくゆくは超原子価フッ素試薬(F+の生成どころじゃないですね)なんていうものもいつか報告されるのでしょうか(Fよりも電気陰性度の高い元素が無いですし…ハッ!Pd(IV)を3当量…という妄想)、楽しみです。ちなみに有機化学系男子はこういう場面ではすかさず「これ、触媒量で回るようにはならないの?」と考えるのかもしれませんが(?)、ひとまず筆者には有機化学系女子をイチコロにするような名案は思い浮かびませんでした…ぐぬぬ..ところで今回の論文のSupporting Infomationを眺めていたら、一連の基質のC-H結合の結合解離エネルギーの表がありました。ほんの僅かなエネルギー差で選択性が現れる、世界は実に巧妙に出来ているのですね。細かいことですが、改めて化学の面白さを実感しました。

 

関連文献

  1.  Ochiai, M.; Miyamoto, K.; Kaneaki, T.; Hayashi, S.; Nakanishi, W. Science 2011, 332, 448-451. doi:10.1126/science.1201686
  2. Wiehn, M. S.; Vinogradova, E. V.; Togni, A. J. Fluorine Chem. 2010, 131, 951. doi:10.1016/j.jfluchem.2010.06.020
  3. Uyanik, M.; Yasui, T.; Ishihara, K. Angew. Chem., Int. Ed. 2010, 49, 2175-2177. doi:10.1002/anie.200907352
  4. (a) Ochiai, M.; Tada, N.; Okada, T.; Sota, A.; Miyamoto, K. J. Am. Chem. Soc., 2008, 130, 2118-2119. doi: 10.1021/ja074624 (b) Ochiai, M.; Miyamoto, K.; Hayashi, S.; Nakanishi, W. Chem. Commun., 2010, 46, 511-521. doi:10.1039/b922033j
  5. 最近の論文:Zalatan, D.N.; Du Bois, J. J. Am. Chem. Soc., 2009, 131, 7558. doi:10.1021/ja902893u
    Kurokawa, T.; Kim, M.; Du Bois, J. Angew. Chem., Int. Ed., 2009, 48, 2777-2779. doi:10.1002/anie.200806192
  6. 最近の論文:Qi, X.; Rice, G. T.; Lall, M. S.; Plummer, M. S.; White, M. C. Tetrahedron, 2010, 66, 4816. doi:10.1016/j.tet.2010.04.064
    Reed, S. A.; Mazzotti, A. R.; White, M. C. J. Am. Chem. Soc., 2009, 131, 11701-11706. doi:10.1021/ja903939k
  7. Gmez-Emeterio, B. P.; Urbano, J.; Daz-Requejo, M. M.; Prez, P. J. Organometallics, 2008, 27, 4126-4130. doi:10.1021/om800218d

 

関連書籍

The following two tabs change content below.
せきとも

せきとも

他人のお金で海外旅行もとい留学を重ね、現在カナダの某五大湖畔で院生。かつては専ら有機化学がテーマであったが、現在は有機無機ハイブリッドのシリカ材料を扱いつつ、高分子化学に

関連記事

  1. 「人工知能時代」と人間の仕事
  2. 向かう所敵なし?オレフィンメタセシス
  3. イミデートラジカルを経由するアルコールのβ位選択的C-Hアミノ化…
  4. ピンナ酸の不斉全合成
  5. バイエルスドルフという会社 ~NIVEA、8×4の生みの親~
  6. ボロールで水素を活性化
  7. π⊥ back bonding; 逆供与でπ結合が強くなる?!
  8. 炭素をつなげる王道反応:アルドール反応 (3)

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. リガンドによりCO2を選択的に導入する
  2. シェンヴィ イソニトリル合成 Shenvi Isonitrile Synthesis
  3. 永田試薬 Nagata Reagent
  4. 新たなクリックケミストリーを拓く”SuFEx反応”
  5. 「薬学の父」長井博士、半生を映画化へ
  6. ヒスチジン近傍選択的なタンパク質主鎖修飾法
  7. 芳香族化合物のスルホン化 Sulfonylation of Aromatic Compound
  8. NPG asia materialsが10周年:ハイライト研究収録のコレクションを公開
  9. 光触媒ラジカルカスケードが実現する網羅的天然物合成
  10. 第32回生体分子科学討論会 

関連商品

注目情報

注目情報

最新記事

Noah Z. Burns ノア・バーンズ

ノア・バーンズ(Noah Z. Burns、19xx年x月xx日-)は、米国の有機合成化学者である。…

結晶データの登録・検索サービス(Access Structures&Deposit Structures)が公開

ケンブリッジ結晶学データセンターとFIZ Karlsruhe は,無償で利用できる結晶データの登録・…

可視光で芳香環を立体選択的に壊す

キラルルイス酸光触媒を用いた不斉脱芳香族的付加環化反応が開発された。ヘテロ芳香環の芳香族性を壊しなが…

科学とは「世界中で共有できるワクワクの源」! 2018年度ロレアル-ユネスコ女性科学者 日本奨励賞

2018年7月18日、フランス大使公邸にて2018年度ロレアル-ユネスコ女性科学者 日本奨励賞の授賞…

クリストフ・レーダー Christoph Rader

クリストフ・レーダー(Christoph Rader、19xx年x月xx日-)は、米国の生化学者・分…

2-(トリメチルシリル)エトキシカルボニル保護基 Teoc Protecting Group

概要2-(トリメチルシリル)エトキシカルボニル(2-(trimethylsilyl)ethoxy…

PAGE TOP