[スポンサーリンク]

線維

フィブロイン Fibroin

[スポンサーリンク]

フィブロイン(Fibroin)は、繭糸(シルク)の主成分であり、繊維状タンパク質の一種である。

化学構造

シルク線維はフィブロインとセリシンから主に構成される。

主成分であるフィブロインは、分子量約35万のH鎖・約2万7千のL鎖が接続した構造をしている。H鎖では、Gly-Ala-Gly-Ala-Gly-Ser/Tyr配列が繰り返される結晶領域(疎水性、緊密)を、ランダム配列の非晶領域(親水性、柔軟)が繫ぐ構造をとる。これら4種のアミノ酸だけで組成の90%以上を占める。結晶領域がβシート構造をとって強固な鎖間相互作用を形成し、線維を形成する。セリシンはフィブロイン線維をコートする役割を果たしている(下記画像は論文[7]より引用)。

材料特性

素材・材料としての特徴と利点
  • 低環境負荷・循環型材料・脱石油プロセス・水系製造プロセス
  • 生体親和性・生分解性・低抗原性・低毒性・低炎症性
  • 多孔性・水/酸素透過性・保湿性
  • 軽量・力学特性(強度・延性・弾性)と柔軟性の両立・高い加工性・表面平滑性
  • 高い屈折率・可視光透過性
  • 絶縁性・誘電性

分子レベルの構造特性が、集積体であるシルクの材料特性に反映される。たとえば柔軟な親水領域と剛直な疎水領域を併せ持つことが、保湿性や独特な力学特性の発現に寄与している。この理屈を理解してアミノ酸配列を改変することにより、材料特性の調節も可能。たとえば側鎖サイズの小さなGly(Ala)の割合が高いと鎖間相互作用の緊密度が上がり、力学特性が強化される。

化学修飾や架橋処理を施すことで、人工的な特性改良・機能付与も実現できる。

生体親和性、生分解性、低抗原性などの特性は、特に医療応用にとって魅力がある。セリシンの糖タンパクがアレルゲンになりうるので、フィブロインのみ抽出(degumming)する必要がある。

応用に際しての課題
  • 天然由来のものは均質性が低い
  • 量的供給が困難
  • タンパク質発現系が構築困難(伸長中に凝集するため)
  • コスト
  • 探索スループットの低さ
  • 化学修飾サイトが少ない

量的供給・均質性の改善と、探索効率化を目指し、遺伝子組換えによる異種生産・バイオインフォマティクスの活用が検討されている。

生物種による違い

自然界には20万種のシルクが知られているが、歴史的に良く研究されているのはカイコクモ由来のフィブロインである。近年になってミノムシフィブロインの構造特性が明らかにされてきた。クモフィブロインよりも強度に優れる理由は、アミノ酸配列の規則性が高く、かかる力が均一に分散されるためだと考察されている[2]。

シルク1本糸の物性比較(こちらより引用)

用途・応用先

化粧品、健康食品、繊維・素材

高い強度と生分解特性を活かし、パラシュート紐、防弾ベスト、航空材料、食物用可食包装などにも応用が検討されている。

組織工学/再生医療(血管、骨、軟骨、神経など)[3]

細胞培養の足場になりやすく、生分解性もあるためよく研究されている。ただしフィブロインは細胞接着に必要な配列(RGDモチーフなど)を欠くものが多いため、培養効率向上を意図して適した配列導入なども検討される。

手術用の縫合材料としては実用化もされている。3Dプリンティングによって幹細胞とともに造形し、人工臓器をつくる研究なども行われている。

ドラッグデリバリー、遺伝子デリバリー[4]

従来製品は主に合成高分子で構成されてきたが、免疫原性などの問題を抱えるため、シルクへの代替が検討されている。薬物放出速度や分解速度を調節する必要があるが、架橋反応や上記アニーリングなどの処理によってシルクの結晶性を調節することで可能となる。形状加工や化学修飾(組織ターゲティング能の付与など)による改良も行われている。

光学材料[5]

カイコシルクは無色透明だが、色素/蛍光材料をドープすることで、光学材料へも応用可能となる。製法には大きく分けて遺伝子改変、色素餌、染色の3通りがある。

導電材料・デバイス応用[6]

医用フレキシブルデバイスへの応用研究が盛んである。シルクそのものは絶縁体であり、主には電子回路をコート・保持してインプラント可能にする用途が検討されている。時間経過によって分解される特性も、応用によってはメリットとなる。誘電体としても振る舞うので、半導体としての活用、有機トランジスタ・メモリ・センシングデバイスへの応用も検討されている。

シルク自体を導電性・蓄電物質にするために、炭化加工が検討されている。スーパーキャパシタ・リチウムイオン電池などへの応用が期待されている。当然ながらシルクとしての材料特性は消失する。

合成法

現在のところ、工業スケールに適うフィブロインの製法は、繭糸からの抽出大腸菌の遺伝子工学を用いた発現のみである。

前者は安価な大量生産に向くが、生産性が季節/気候に依存する、労働集約的、分子レベルの加工が出来ない、セリシン除去によって構造が傷んだり凝集する、製品の不均質性が高い、などが問題となる。

後者はアミノ酸配列と分子量を制御しやすい利点があるが、高分子量のものを大量生産することはできない。

より高次の動物/植物細胞を用いる遺伝子工学技術によってこれらの問題が解決できると考えられているが、技術的に難度が高く、現在でも研究が続けられている。

フィブロイン模倣高分子の化学合成[7]

遺伝子工学に頼らず、化学合成によってフィブロイン模倣高分子をつくるアプローチも検討されている。シルクに含まれる特徴的なアミノ酸配列を基盤としたペプチドモノマーを用意し、別の人工モノマーと共重合させるアプローチがよく採られる。天然由来の枠に留まらない構造多様性と自由度を付与でき、人工的な機能発現、均質性の改善なども期待できる。

しかしながら現状課題は多く、基礎研究を通じた解決が求められている。たとえば溶媒への溶解性が悪いものは成形性が課題となる。配列制御を厳密化しようとすると、高分子量ポリマーが合成しづらくなったり、コストも高くなり、スケールアップも難しくなる。重合中に凝集することで開始剤・添加剤が取り込まれてしまうことも問題となる。

参考文献

  1. (a)「フィブロインの利用」玉田靖、蚕糸・昆虫バイオテック 2007, 76, 3-8. [PDF] (b) “Design, Fabrication, and Function of Silk-Based Nanomaterial” Wang, Y. et al. Adv. Funct. Mater. 2018, 28, 1805305. doi:10.1002/adfm.201805305 (c) “Engineering the Future of Silk Materials through Advanced Manufacturing” Zhou, Z. et al. Adv. Mater. 2018, 30, 1706983. doi:10.1002/adma.201706983
  2.  “A study of the extraordinarily strong and tough silk produced by bagworms” Yoshioka, T.; Tsubota, T.; Tashiro, K.; Jouraku, A.; Kameda, T. Nat. Commun. 2019, 10, 1469.  DOI: 10.1038/s41467-019-09350-3
  3. (a)”Biomedical Applications of Recombinant  Silk-Based Materials” Aigner, T. B. et al. Adv. Mater. 2018, 30, 1704636. doi:10.1002/adma.201704636 (b) “Silk Fibroin-Based Biomaterials for Biomedical Applications: A Review” Polymers 2019, 11, 1933. doi: 10.3390/polym11121933 (c) “Spider Silk for Tissue Engineering Applications” Salehi, S.; Koeck, K.; Scheibel, T. Molecules 2020, 25, 73. DOI: 10.3390/molecules25030737 (d) “Silkworm silk-based materials and devices generated using bio-nanotechnology” Huang, W.; Ling, S.; Li, C.; Omenetto, F. G.; Kaplan, D. L. Chem. Soc. Rev. 2018, 47, 6486. doi:10.1039/C8CS00187A
  4. (a) “Silk nanoparticles—an emerging anticancer nanomedicine” Seib, F. P. AIMS Bioengineering 2017, 4, 239. DOI: 10.3934/bioeng.2017.2.239 (b) “Functionalized silk fibroin nanofibers as drug carriers: Advantages and challenges” Farokhi, M.; Mottaghitalab, F.; Reis, R. L.; Ramakrishna, S.; Kundu, S. C. J. Controlled Release 2020, 321, 324-347. doi:10.1016/j.jconrel.2020.02.022
  5. “Functional Silk: Colored and Luminescent” Tansil, N. C.; Koh, L. D.; Han, M.-Y. Adv. Mater. 2012, 24, 1338. doi:10.1002/adma.201104118
  6. “Silk Fibroin for Flexible Electronic Devices” Zhu, B. et al. Adv. Mater. 2016, 28, 4250.  doi:10.1002/adma.201504276
  7. ”Chemical Synthesis of Silk-Mimetic Polymers” Sarkar, A.; Connor, A. J.; Koffas, M.; Zha, R. H. Materials 2019, 12, 4086. DOI: 10.3390/ma12244086

関連書籍

ケムステ関連記事

外部リンク

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 2,5-ジ-(N-(­­­­–)-プロイル)-パラ-ベンゾキノン…
  2. A-ファクター A-factor
  3. ミノキシジル /Minoxidil
  4. シラフルオフェン (silafluofen)
  5. アルファリポ酸 /α-lipoic acid
  6. ミヤコシンA (miyakosyne A)
  7. カンファー(camphor)
  8. ビリジカタムトキシン Viridicatumtoxin

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. MOF 内の水分子吸着過程の解析とそれに基づく水蒸気捕集技術の向上
  2. 「話すのが得意」でも面接が通らない人の特徴
  3. 上村大輔教授追悼記念講演会
  4. 第45回―「ナノ材料の設計と合成、デバイスの医療応用」Younan Xia教授
  5. 共役はなぜ起こる?
  6. 抗精神病薬として初めての口腔内崩壊錠が登場
  7. アントンパール 「Monowave300」: マイクロ波有機合成の新武器
  8. 大井貴史 Takashi Ooi
  9. Dead Endを回避せよ!「全合成・極限からの一手」⑥
  10. マット・ショアーズ Matthew P. Shores

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年6月
1234567
891011121314
15161718192021
22232425262728
2930  

注目情報

注目情報

最新記事

SNS予想で盛り上がれ!2022年ノーベル化学賞は誰の手に?

さてことしも9月半ば、ノーベル賞シーズンが到来します!化学賞は日本時間 10月5日(水) 18時45…

マテリアルズ・インフォマティクスにおける予測モデルの解釈性を上げるには?

開催日:2022/09/28 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

クラリベイト・アナリティクスが「引用栄誉賞2022」を発表!

ノーベル賞発表時期が近づき、例年同様、クラリベイト・アナリティクス社から2022年の引用栄誉賞が発表…

「つける」と「はがす」の新技術|分子接合と表面制御 R4

開講期間令和4(2022)年  9月28日(水)、29日(木)(計2日間)募集人員15名…

ケムステ版・ノーベル化学賞候補者リスト【2022年版】

各媒体からかき集めた情報を元に、「未来にノーベル化学賞の受賞確率がある、存命化学者」をリストアップし…

第31回Vシンポ「精密有機構造解析」を開催します!

こんにちは、今回第31回Vシンポの運営&司会を務めさせていただくMacyです、よろしくお願い…

理化学機器のリユースマーケット「ZAI」

不要になった理化学機器どうしていますか?大学だと資産や予算上の関係でなかなか処分に困るところ…

『主鎖むき出し』の芳香族ポリマーの合成に成功 ~長年の難溶性問題を解決~

第420回のスポットライトリサーチは、名古屋大学大学院理学研究科理学専攻 物質・生命化学領域 有機化…

研究費総額100万円!30年後のミライをつくる若手研究者を募集します【academist】

みなさんの隣の研究室では、どのような研究者が、何の研究を進めているかご存知でしょうか。隣の研究室なら…

イグノーベル賞2022が発表:化学賞は無かったけどユニークな研究が盛りだくさん

今年もノーベル賞の季節がやってきました。今年の受賞者の予想に一部ではすでに盛り上がりを見せていますが…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP