[スポンサーリンク]

線維

フィブロイン Fibroin

[スポンサーリンク]

フィブロイン(Fibroin)は、繭糸(シルク)の主成分であり、繊維状タンパク質の一種である。

化学構造

シルク線維はフィブロインとセリシンから主に構成される。

主成分であるフィブロインは、分子量約35万のH鎖・約2万7千のL鎖が接続した構造をしている。H鎖では、Gly-Ala-Gly-Ala-Gly-Ser/Tyr配列が繰り返される結晶領域(疎水性、緊密)を、ランダム配列の非晶領域(親水性、柔軟)が繫ぐ構造をとる。これら4種のアミノ酸だけで組成の90%以上を占める。結晶領域がβシート構造をとって強固な鎖間相互作用を形成し、線維を形成する。セリシンはフィブロイン線維をコートする役割を果たしている(下記画像は論文[7]より引用)。

材料特性

素材・材料としての特徴と利点
  • 低環境負荷・循環型材料・脱石油プロセス・水系製造プロセス
  • 生体親和性・生分解性・低抗原性・低毒性・低炎症性
  • 多孔性・水/酸素透過性・保湿性
  • 軽量・力学特性(強度・延性・弾性)と柔軟性の両立・高い加工性・表面平滑性
  • 高い屈折率・可視光透過性
  • 絶縁性・誘電性

分子レベルの構造特性が、集積体であるシルクの材料特性に反映される。たとえば柔軟な親水領域と剛直な疎水領域を併せ持つことが、保湿性や独特な力学特性の発現に寄与している。この理屈を理解してアミノ酸配列を改変することにより、材料特性の調節も可能。たとえば側鎖サイズの小さなGly(Ala)の割合が高いと鎖間相互作用の緊密度が上がり、力学特性が強化される。

化学修飾や架橋処理を施すことで、人工的な特性改良・機能付与も実現できる。

生体親和性、生分解性、低抗原性などの特性は、特に医療応用にとって魅力がある。セリシンの糖タンパクがアレルゲンになりうるので、フィブロインのみ抽出(degumming)する必要がある。

応用に際しての課題
  • 天然由来のものは均質性が低い
  • 量的供給が困難
  • タンパク質発現系が構築困難(伸長中に凝集するため)
  • コスト
  • 探索スループットの低さ
  • 化学修飾サイトが少ない

量的供給・均質性の改善と、探索効率化を目指し、遺伝子組換えによる異種生産・バイオインフォマティクスの活用が検討されている。

生物種による違い

自然界には20万種のシルクが知られているが、歴史的に良く研究されているのはカイコクモ由来のフィブロインである。近年になってミノムシフィブロインの構造特性が明らかにされてきた。クモフィブロインよりも強度に優れる理由は、アミノ酸配列の規則性が高く、かかる力が均一に分散されるためだと考察されている[2]。

シルク1本糸の物性比較(こちらより引用)

用途・応用先

化粧品、健康食品、繊維・素材

高い強度と生分解特性を活かし、パラシュート紐、防弾ベスト、航空材料、食物用可食包装などにも応用が検討されている。

組織工学/再生医療(血管、骨、軟骨、神経など)[3]

細胞培養の足場になりやすく、生分解性もあるためよく研究されている。ただしフィブロインは細胞接着に必要な配列(RGDモチーフなど)を欠くものが多いため、培養効率向上を意図して適した配列導入なども検討される。

手術用の縫合材料としては実用化もされている。3Dプリンティングによって幹細胞とともに造形し、人工臓器をつくる研究なども行われている。

ドラッグデリバリー、遺伝子デリバリー[4]

従来製品は主に合成高分子で構成されてきたが、免疫原性などの問題を抱えるため、シルクへの代替が検討されている。薬物放出速度や分解速度を調節する必要があるが、架橋反応や上記アニーリングなどの処理によってシルクの結晶性を調節することで可能となる。形状加工や化学修飾(組織ターゲティング能の付与など)による改良も行われている。

光学材料[5]

カイコシルクは無色透明だが、色素/蛍光材料をドープすることで、光学材料へも応用可能となる。製法には大きく分けて遺伝子改変、色素餌、染色の3通りがある。

導電材料・デバイス応用[6]

医用フレキシブルデバイスへの応用研究が盛んである。シルクそのものは絶縁体であり、主には電子回路をコート・保持してインプラント可能にする用途が検討されている。時間経過によって分解される特性も、応用によってはメリットとなる。誘電体としても振る舞うので、半導体としての活用、有機トランジスタ・メモリ・センシングデバイスへの応用も検討されている。

シルク自体を導電性・蓄電物質にするために、炭化加工が検討されている。スーパーキャパシタ・リチウムイオン電池などへの応用が期待されている。当然ながらシルクとしての材料特性は消失する。

合成法

現在のところ、工業スケールに適うフィブロインの製法は、繭糸からの抽出大腸菌の遺伝子工学を用いた発現のみである。

前者は安価な大量生産に向くが、生産性が季節/気候に依存する、労働集約的、分子レベルの加工が出来ない、セリシン除去によって構造が傷んだり凝集する、製品の不均質性が高い、などが問題となる。

後者はアミノ酸配列と分子量を制御しやすい利点があるが、高分子量のものを大量生産することはできない。

より高次の動物/植物細胞を用いる遺伝子工学技術によってこれらの問題が解決できると考えられているが、技術的に難度が高く、現在でも研究が続けられている。

フィブロイン模倣高分子の化学合成[7]

遺伝子工学に頼らず、化学合成によってフィブロイン模倣高分子をつくるアプローチも検討されている。シルクに含まれる特徴的なアミノ酸配列を基盤としたペプチドモノマーを用意し、別の人工モノマーと共重合させるアプローチがよく採られる。天然由来の枠に留まらない構造多様性と自由度を付与でき、人工的な機能発現、均質性の改善なども期待できる。

しかしながら現状課題は多く、基礎研究を通じた解決が求められている。たとえば溶媒への溶解性が悪いものは成形性が課題となる。配列制御を厳密化しようとすると、高分子量ポリマーが合成しづらくなったり、コストも高くなり、スケールアップも難しくなる。重合中に凝集することで開始剤・添加剤が取り込まれてしまうことも問題となる。

参考文献

  1. (a)「フィブロインの利用」玉田靖、蚕糸・昆虫バイオテック 2007, 76, 3-8. [PDF] (b) “Design, Fabrication, and Function of Silk-Based Nanomaterial” Wang, Y. et al. Adv. Funct. Mater. 2018, 28, 1805305. doi:10.1002/adfm.201805305 (c) “Engineering the Future of Silk Materials through Advanced Manufacturing” Zhou, Z. et al. Adv. Mater. 2018, 30, 1706983. doi:10.1002/adma.201706983
  2.  “A study of the extraordinarily strong and tough silk produced by bagworms” Yoshioka, T.; Tsubota, T.; Tashiro, K.; Jouraku, A.; Kameda, T. Nat. Commun. 2019, 10, 1469.  DOI: 10.1038/s41467-019-09350-3
  3. (a)”Biomedical Applications of Recombinant  Silk-Based Materials” Aigner, T. B. et al. Adv. Mater. 2018, 30, 1704636. doi:10.1002/adma.201704636 (b) “Silk Fibroin-Based Biomaterials for Biomedical Applications: A Review” Polymers 2019, 11, 1933. doi: 10.3390/polym11121933 (c) “Spider Silk for Tissue Engineering Applications” Salehi, S.; Koeck, K.; Scheibel, T. Molecules 2020, 25, 73. DOI: 10.3390/molecules25030737 (d) “Silkworm silk-based materials and devices generated using bio-nanotechnology” Huang, W.; Ling, S.; Li, C.; Omenetto, F. G.; Kaplan, D. L. Chem. Soc. Rev. 2018, 47, 6486. doi:10.1039/C8CS00187A
  4. (a) “Silk nanoparticles—an emerging anticancer nanomedicine” Seib, F. P. AIMS Bioengineering 2017, 4, 239. DOI: 10.3934/bioeng.2017.2.239 (b) “Functionalized silk fibroin nanofibers as drug carriers: Advantages and challenges” Farokhi, M.; Mottaghitalab, F.; Reis, R. L.; Ramakrishna, S.; Kundu, S. C. J. Controlled Release 2020, 321, 324-347. doi:10.1016/j.jconrel.2020.02.022
  5. “Functional Silk: Colored and Luminescent” Tansil, N. C.; Koh, L. D.; Han, M.-Y. Adv. Mater. 2012, 24, 1338. doi:10.1002/adma.201104118
  6. “Silk Fibroin for Flexible Electronic Devices” Zhu, B. et al. Adv. Mater. 2016, 28, 4250.  doi:10.1002/adma.201504276
  7. ”Chemical Synthesis of Silk-Mimetic Polymers” Sarkar, A.; Connor, A. J.; Koffas, M.; Zha, R. H. Materials 2019, 12, 4086. DOI: 10.3390/ma12244086

関連書籍

ケムステ関連記事

外部リンク

cosine

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. ニトログリセリン / nitroglycerin
  2. 水 (water, dihydrogen monoxide)
  3. 過塩素酸カリウム (potassium perchlorate)…
  4. ビリジカタムトキシン Viridicatumtoxin
  5. エチルマレイミド (N-ethylmaleimide)
  6. プロパンチアールオキシド (propanethial S-oxi…
  7. アデノシン /adenosine
  8. カーボンナノチューブ /carbon nanotube (CNT…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. エナンチオ選択的Heck反応で三級アルキルフルオリドを合成する
  2. Dead Endを回避せよ!「全合成・極限からの一手」④(解答編)
  3. 有機光触媒を用いたポリマー合成
  4. アスパルテーム /aspartame
  5. ソウル大教授Nature Materials論文捏造か?
  6. 製薬各社 2010年度決算
  7. 近赤外光を吸収する有機分子集合体の発見
  8. 海外で働いている僕の体験談
  9. ヨアヒム・フランク Joachim Frank
  10. カーボンナノチューブ /carbon nanotube (CNT)

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

第102回―「有機薄膜エレクトロニクスと太陽電池の研究」Lynn Loo教授

第102回の海外化学者インタビューは、Lynn Loo教授です。プリンストン大学 化学工学科に所属し…

化学系必見!お土産・グッズ・アイテム特集

bergです。今回は化学系や材料系の学生さんや研究者の方々がつい手に取りたくなりそうなグッズなどを筆…

危険物取扱者:記事まとめ

世の中には様々な化学系の資格があり、化学系企業で働いていると資格を取る必要に迫られる機会があります。…

化学者のためのエレクトロニクス入門③ ~半導体業界で活躍する化学メーカー編~

bergです。化学者のためのエレクトロニクス入門のシリーズも3回目を迎えました。前回は電子回路を大き…

第101回―「高分子ナノ構造の精密合成」Rachel O’Reilly教授

第101回の海外化学者インタビューは、レイチェル・オライリー教授です。ケンブリッジ大学化学科に所属(…

大学院生になっても宿題に追われるってどないなんだが?【アメリカでPh.D.を取る–コースワークの巻–】

アメリカでの PhD 課程の1年目には、多くの大学院の場合, 研究だけでなく、講義の受講やTAの義務…

島津製作所 創業記念資料館

島津製作所の創業から現在に至るまでの歴史を示す資料館で、数々の発明品が展示されている。第10回化学遺…

研究テーマ変更奮闘記 – PhD留学(後編)

前回の記事では、私がPhD留学を始めた際のテーマ決めの流れや、その後テーマ変更を考え始めてからの教授…

Chem-Station Twitter

PAGE TOP