[スポンサーリンク]

化学者のつぶやき

エーテルがDiels–Alder反応?トリチルカチオンでin situ 酸化DA!

[スポンサーリンク]

銅触媒とトリチルカチオンによるエーテルとヘテロジエンとの不斉Diels–Alder反応が開発された。トリチルカチオンがエーテルを脱ヒドリド化しエノールエーテルを反応系中で生成することが本手法の鍵である。広範なジヒドロピラン類が簡便に合成できる。

トリチルカチオンによる脱ヒドリド化反応

ジヒドロピランは天然有機化合物や医薬品に頻出する重要骨格である。ジヒドロピラン類の合成法として、キラル分子触媒を用いたα,β-不飽和カルボニル(ヘテロジエン)とジエノフィルの不斉ヘテロDiels–Alder反応が知られる[1]。なかでもCu–BOX触媒(BOX= ビスオキサゾリン)によるヘテロジエンとエノールエーテルとの立体選択的なヘテロDiels–Alder反応が多く報告されてきた(図1A)[1]。Cu–BOX錯体がルイス酸として働き、ヘテロジエンの酸素原子に配位することで立体選択性が発現する。同様の反応はこれまでに多く報告されているが、エノールエーテルは市販品が少なく、それらの合成及び精製はしばしば困難を伴うという課題がある[1,2]
この課題を解決するため、本論文著者の和佐らは入手容易で化学的に安定なエーテルを原料とし、反応系中でエノールエーテルへ酸化することを考えた。これに際し、トリチルカチオンに着目した。トリチルカチオンはアセタールやエーテルの酸素原子のα位C–Hを脱ヒドリド化できることが知られる(図1B)[3]。トリチルカチオンを用いて反応系中でエーテルを酸化し、生じたエノールエーテルがCu–BOX錯体存在下立体選択的なヘテロDiels–Alder反応すれば、様々なジヒドロピラン類を生成できると推定した(図1C)。この考えのもと、著者らはCu–BOX触媒と酢酸トリチル存在下、エーテルとヘテロジエンを用いる不斉ヘテロDiels–Alder反応を開発したので紹介する。

図1. (A) Cu–BOX錯体を用いたヘテロDiels–Alder反応 (B) トリチルカチオンによる脱ヒドリド化反応 (C) 今回の研究

 

Enantioselective Organocopper-Catalyzed Hetero Diels–Alder Reaction through in Situ Oxidation of Ethers into Enol Ethers
Yesilcimen, A.; Jiang, N.-C.; Gottlieb, F. H.; Wasa, M. J. Am. Chem. Soc. 2022, 144, 6173–6179.
DOI: 10.1021/jacs.2c01656

論文著者の紹介

研究者 : Masayuki Wasa
研究者の経歴:
2006 B.S. Brandeis University, USA
2013 Ph.D, The Scripps Research Institute, USA (Prof. Jin-Quan Yu)
2013–2015 JSPS Postdoctoral Fellow, Harvard University, USA (Prof. Eric N. Jacobsen)
2015– Assistant Professor, Boston College, USA
研究内容:FLPを用いたC–C、C–ヘテロ原子結合形成反応の開発

論文の概要

著者らは、次のような作業仮説を立案した(図2A)。まず、トリチル化合物1と銅触媒2(L–CuX2)からトリチルカチオンが生じる。トリチルカチオンがエーテル3を脱ヒドリド化してオキソカルベニウムカチオン4を生成し、続く脱プロトン化によりエノールエーテル5を与える。最後に、5が銅触媒存在下ヘテロジエン6と立体選択的なヘテロDiels–Alder反応して、ジヒドロピラン7が得られると考えた。
条件検討の結果、Cu–BOX触媒2Aと酢酸トリチルを用いると、エーテル3 (4当量)とヘテロジエン6との不斉Diels–Alder反応が進行し、高いエナンチオ選択性でジヒドロピラン7が得られることを見いだした(図2B)。本反応では鎖状エーテル3aやテトラヒドロピラン(3b)、THF(3c)が適用でき、高エナンチオ選択性で7a7cを与えた。この際、7cは高endo選択的に得られたが、7a, 7bではendo/exo選択性は低かった。THF-d8も反応に適用でき、重水素化された生成物7dが得られた。対応するジヒドロフラン-d6は調製が困難であり、この例は本反応の有用性を示す結果と言える。また、キラルエーテルを用いても反応が進行しendo7eが優先して得られた。ヘテロジエンのβ位にメチル基をもつ基質を用いても反応が進行した(7f)。
本反応で鎖状エーテルを用いた際、syn体のみが得られたことから、本反応ではZ体のエノールエーテルのみが反応すると考えられる。比較対照実験として、事前調製した(E)-エノールエーテル(E)-5gをヘテロDiels–Alder反応条件に付したところ、syn7gが高収率で得られた(図2C)。この結果から、本ヘテロDiels–Alder反応では、エーテルの脱ヒドリド化で(E)-エノールエーテルが生成しても、Z体へ異性化したのちにヘテロDiels–Alder反応すると著者らは結論づけている。実際に、著者らは銅触媒2A存在下(E)-5gZ体に異性化することを確認している。

図2. (A) 推定反応機構 (B) 基質適用範囲 (C) (E)-エノールエーテルを用いたヘテロDiels–Alder反応

 

以上、トリチルカチオンによる脱ヒドリド化反応を鍵とした立体選択的なジヒドロピラン類の合成法を開発した。入手容易なエーテルを用いることを可能にした本ヘテロDiels–Alder反応は、今後天然物や医薬品などの生物活性物質の合成に適用されると期待できる。

参考文献

  1. (a) Desimoni, G.; Faita, G.; Quadrelli, P. Forty Years after “Heterodiene Syntheses with α, β-Unsaturated Carbonyl Compounds”: Enantioselective Syntheses of 3,4-Dihydropyran Derivatives. Chem. Rev. 2018, 118, 2080–2248. DOI: 1021/acs.chemrev.7b00322 (b) Reymond, S.; Cossy, J. Copper-Catalyzed Diels–Alder Reactions. Chem. Rev. 2008, 108, 5359–5406. DOI: 10.1021/cr078346g (c) Esquivias, J.; Arrayás, R. G.; Carretero, J. C. Catalytic Asymmetric Inverse-Electron-Demand Diels–Alder Reaction of N-Sulfonyl-1-Aza-1,3-Dienes. J. Am. Chem. Soc. 2007, 129, 1480–1481. DOI: 10.1021/ja0658766 (d) Evans, D. A.; Johnson, J. S. Catalytic Enantioselective Hetero Diels–Alder Reactions of α, β-Unsaturated Acyl Phosphonates with Enol Ethers. J. Am. Chem. Soc. 1998, 120, 4895–4896. DOI: 10.1021/ja980423p (e) Thorhauge, J.; Johannsen, M.; Jørgensen, K. A. Highly Enantioselective Catalytic Hetero-Diels–Alder Reaction with Inverse Electron Demand. Angew. Chem., Int. Ed. 1998, 37, 2404–2406. DOI: 10.1002/(SICI)1521-3773(19980918)37:17<2404::AID-ANIE2404>3.0.CO;2-D (f) Evans, D. A.; Johnson, J. S.; Olhava, E. J. Enantioselective Synthesis of Dihydropyrans. Catalysis of Hetero Diels–Alder Reactions by Bis(oxazoline) Copper(II) Complexes. J. Am. Chem. Soc. 2000, 122, 1635–1649. DOI: 10.1021/ja992175i (g) Stavenger, R. A.; Schreiber, S. L. Asymmetric Catalysis in Diversity-Oriented Organic Synthesis: Enantioselective Synthesis of 4320 Encoded and Spatially Segregated Dihydropyrancarboxamides. Angew. Chem., Int. Ed. 2001, 40, 3417–3421. DOI: 10.1002/1521-3773(20010917)40:18<3417::AID-ANIE3417>3.0.CO;2-E (h) Gademann, K.; Chavez, D. E.; Jacobsen, E. N. Highly Enantioselective Inverse-Electron-Demand Hetero-Diels–Alder Reactions of α, β-Unsaturated Aldehydes. Angew. Chem., Int. Ed. 2002, 41, 3059–3061. DOI: 10.1002/1521-3773(20020816)41:16<3059::AID-ANIE3059>3.0.CO;2-I(i) Chen, J.-B.; Xu, M.; Zhang, J.-Q.; Sun, B.-B.; Hu, J.-M.; Yu, J.-Q.; Wang, X.-W.; Xia, Y.; Wang, Z. Modular Chiral Bisoxalamide−Copper-Catalyzed Asymmetric Oxo-Diels–Alder Reaction: Carbonyl Coordination for High Enantio- and Diastereocontrols. ACS Catal. 2020, 10, 3556–3563. DOI:10.1021/acscatal.9b05606 (j) Hong, Y.; Cui, T.; Ivlev, S.; Xie, X.; Meggers, E. Chiral-at-Iron Catalyst for Highly Enantioselective and Diastereoselective Hetero-Diels–Alder Reaction. Chem. Eur. J. 2021, 27, 8557–8563. DOI: 10.1002/chem.202100703 (k) Akiyama, T.; Morita, H.; Fuchibe, K. Chiral Brønsted Acid-Catalyzed Inverse Electron-Demand Aza Diels–Alder Reaction. J. Am. Chem. Soc. 2006, 128, 13070–13071. DOI: 10.1021/ja064676r
  2. Winternheimer, D. J.; Shade, R. E.; Merlic, C. A. Methods for Vinyl Ether Synthesis. Synthesis 2010, 15, 2497–2511. DOI: 1055/s-0030-1258166
  3. Ma, Y.; Loub, S.-J.; Hou, Z. Electron-Deficient Boron-Based Catalysts for C–H Bond Functionalisation. Chem. Soc. Rev. 2021, 50, 1945–1967. DOI:1039/d0cs00380h
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. クリスマス化学史 元素記号Hの発見
  2. 第14回ケムステVシンポ「スーパー超分子ワールド」を開催します!…
  3. 有機合成化学協会誌2018年2月号:全アリール置換芳香族化合物・…
  4. 銅中心が動く人工非ヘム金属酵素の簡便な構築に成功
  5. 化学研究ライフハック:ソーシャルブックマークを活用しよう!
  6. 地域の光る化学企業たち-1
  7. 第38回ケムステVシンポ「多様なキャリアに目を向ける:化学分野の…
  8. 多核テルビウムクラスターにおけるエネルギー移動機構の解明

注目情報

ピックアップ記事

  1. ビギネリ反応 Biginelli Reaction
  2. 3Mとはどんな会社? 2021年版
  3. 茨城の女子高生が快挙!
  4. 第五回 化学の力で生物システムを制御ー浜地格教授
  5. 研究室クラウド設立のススメ(経緯編)
  6. 脱一酸化炭素を伴う分子間ラジカル連結反応とPd(0)触媒による8員環形成反応を鍵としたタキソールの収束的全合成
  7. 第126回―「分子アセンブリによって複雑化合物へとアプローチする」Zachary Aron博士
  8. 【書籍】アリエナイ化学実験の世界へ―『Mad Science―炎と煙と轟音の科学実験54』
  9. 第35回構造有機化学討論会
  10. 恋する創薬研究室

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年6月
 12345
6789101112
13141516171819
20212223242526
27282930  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP