[スポンサーリンク]

化学者のつぶやき

エーテルがDiels–Alder反応?トリチルカチオンでin situ 酸化DA!

[スポンサーリンク]

銅触媒とトリチルカチオンによるエーテルとヘテロジエンとの不斉Diels–Alder反応が開発された。トリチルカチオンがエーテルを脱ヒドリド化しエノールエーテルを反応系中で生成することが本手法の鍵である。広範なジヒドロピラン類が簡便に合成できる。

トリチルカチオンによる脱ヒドリド化反応

ジヒドロピランは天然有機化合物や医薬品に頻出する重要骨格である。ジヒドロピラン類の合成法として、キラル分子触媒を用いたα,β-不飽和カルボニル(ヘテロジエン)とジエノフィルの不斉ヘテロDiels–Alder反応が知られる[1]。なかでもCu–BOX触媒(BOX= ビスオキサゾリン)によるヘテロジエンとエノールエーテルとの立体選択的なヘテロDiels–Alder反応が多く報告されてきた(図1A)[1]。Cu–BOX錯体がルイス酸として働き、ヘテロジエンの酸素原子に配位することで立体選択性が発現する。同様の反応はこれまでに多く報告されているが、エノールエーテルは市販品が少なく、それらの合成及び精製はしばしば困難を伴うという課題がある[1,2]
この課題を解決するため、本論文著者の和佐らは入手容易で化学的に安定なエーテルを原料とし、反応系中でエノールエーテルへ酸化することを考えた。これに際し、トリチルカチオンに着目した。トリチルカチオンはアセタールやエーテルの酸素原子のα位C–Hを脱ヒドリド化できることが知られる(図1B)[3]。トリチルカチオンを用いて反応系中でエーテルを酸化し、生じたエノールエーテルがCu–BOX錯体存在下立体選択的なヘテロDiels–Alder反応すれば、様々なジヒドロピラン類を生成できると推定した(図1C)。この考えのもと、著者らはCu–BOX触媒と酢酸トリチル存在下、エーテルとヘテロジエンを用いる不斉ヘテロDiels–Alder反応を開発したので紹介する。

図1. (A) Cu–BOX錯体を用いたヘテロDiels–Alder反応 (B) トリチルカチオンによる脱ヒドリド化反応 (C) 今回の研究

 

Enantioselective Organocopper-Catalyzed Hetero Diels–Alder Reaction through in Situ Oxidation of Ethers into Enol Ethers
Yesilcimen, A.; Jiang, N.-C.; Gottlieb, F. H.; Wasa, M. J. Am. Chem. Soc. 2022, 144, 6173–6179.
DOI: 10.1021/jacs.2c01656

論文著者の紹介

研究者 : Masayuki Wasa
研究者の経歴:
2006 B.S. Brandeis University, USA
2013 Ph.D, The Scripps Research Institute, USA (Prof. Jin-Quan Yu)
2013–2015 JSPS Postdoctoral Fellow, Harvard University, USA (Prof. Eric N. Jacobsen)
2015– Assistant Professor, Boston College, USA
研究内容:FLPを用いたC–C、C–ヘテロ原子結合形成反応の開発

論文の概要

著者らは、次のような作業仮説を立案した(図2A)。まず、トリチル化合物1と銅触媒2(L–CuX2)からトリチルカチオンが生じる。トリチルカチオンがエーテル3を脱ヒドリド化してオキソカルベニウムカチオン4を生成し、続く脱プロトン化によりエノールエーテル5を与える。最後に、5が銅触媒存在下ヘテロジエン6と立体選択的なヘテロDiels–Alder反応して、ジヒドロピラン7が得られると考えた。
条件検討の結果、Cu–BOX触媒2Aと酢酸トリチルを用いると、エーテル3 (4当量)とヘテロジエン6との不斉Diels–Alder反応が進行し、高いエナンチオ選択性でジヒドロピラン7が得られることを見いだした(図2B)。本反応では鎖状エーテル3aやテトラヒドロピラン(3b)、THF(3c)が適用でき、高エナンチオ選択性で7a7cを与えた。この際、7cは高endo選択的に得られたが、7a, 7bではendo/exo選択性は低かった。THF-d8も反応に適用でき、重水素化された生成物7dが得られた。対応するジヒドロフラン-d6は調製が困難であり、この例は本反応の有用性を示す結果と言える。また、キラルエーテルを用いても反応が進行しendo7eが優先して得られた。ヘテロジエンのβ位にメチル基をもつ基質を用いても反応が進行した(7f)。
本反応で鎖状エーテルを用いた際、syn体のみが得られたことから、本反応ではZ体のエノールエーテルのみが反応すると考えられる。比較対照実験として、事前調製した(E)-エノールエーテル(E)-5gをヘテロDiels–Alder反応条件に付したところ、syn7gが高収率で得られた(図2C)。この結果から、本ヘテロDiels–Alder反応では、エーテルの脱ヒドリド化で(E)-エノールエーテルが生成しても、Z体へ異性化したのちにヘテロDiels–Alder反応すると著者らは結論づけている。実際に、著者らは銅触媒2A存在下(E)-5gZ体に異性化することを確認している。

図2. (A) 推定反応機構 (B) 基質適用範囲 (C) (E)-エノールエーテルを用いたヘテロDiels–Alder反応

 

以上、トリチルカチオンによる脱ヒドリド化反応を鍵とした立体選択的なジヒドロピラン類の合成法を開発した。入手容易なエーテルを用いることを可能にした本ヘテロDiels–Alder反応は、今後天然物や医薬品などの生物活性物質の合成に適用されると期待できる。

参考文献

  1. (a) Desimoni, G.; Faita, G.; Quadrelli, P. Forty Years after “Heterodiene Syntheses with α, β-Unsaturated Carbonyl Compounds”: Enantioselective Syntheses of 3,4-Dihydropyran Derivatives. Chem. Rev. 2018, 118, 2080–2248. DOI: 1021/acs.chemrev.7b00322 (b) Reymond, S.; Cossy, J. Copper-Catalyzed Diels–Alder Reactions. Chem. Rev. 2008, 108, 5359–5406. DOI: 10.1021/cr078346g (c) Esquivias, J.; Arrayás, R. G.; Carretero, J. C. Catalytic Asymmetric Inverse-Electron-Demand Diels–Alder Reaction of N-Sulfonyl-1-Aza-1,3-Dienes. J. Am. Chem. Soc. 2007, 129, 1480–1481. DOI: 10.1021/ja0658766 (d) Evans, D. A.; Johnson, J. S. Catalytic Enantioselective Hetero Diels–Alder Reactions of α, β-Unsaturated Acyl Phosphonates with Enol Ethers. J. Am. Chem. Soc. 1998, 120, 4895–4896. DOI: 10.1021/ja980423p (e) Thorhauge, J.; Johannsen, M.; Jørgensen, K. A. Highly Enantioselective Catalytic Hetero-Diels–Alder Reaction with Inverse Electron Demand. Angew. Chem., Int. Ed. 1998, 37, 2404–2406. DOI: 10.1002/(SICI)1521-3773(19980918)37:17<2404::AID-ANIE2404>3.0.CO;2-D (f) Evans, D. A.; Johnson, J. S.; Olhava, E. J. Enantioselective Synthesis of Dihydropyrans. Catalysis of Hetero Diels–Alder Reactions by Bis(oxazoline) Copper(II) Complexes. J. Am. Chem. Soc. 2000, 122, 1635–1649. DOI: 10.1021/ja992175i (g) Stavenger, R. A.; Schreiber, S. L. Asymmetric Catalysis in Diversity-Oriented Organic Synthesis: Enantioselective Synthesis of 4320 Encoded and Spatially Segregated Dihydropyrancarboxamides. Angew. Chem., Int. Ed. 2001, 40, 3417–3421. DOI: 10.1002/1521-3773(20010917)40:18<3417::AID-ANIE3417>3.0.CO;2-E (h) Gademann, K.; Chavez, D. E.; Jacobsen, E. N. Highly Enantioselective Inverse-Electron-Demand Hetero-Diels–Alder Reactions of α, β-Unsaturated Aldehydes. Angew. Chem., Int. Ed. 2002, 41, 3059–3061. DOI: 10.1002/1521-3773(20020816)41:16<3059::AID-ANIE3059>3.0.CO;2-I(i) Chen, J.-B.; Xu, M.; Zhang, J.-Q.; Sun, B.-B.; Hu, J.-M.; Yu, J.-Q.; Wang, X.-W.; Xia, Y.; Wang, Z. Modular Chiral Bisoxalamide−Copper-Catalyzed Asymmetric Oxo-Diels–Alder Reaction: Carbonyl Coordination for High Enantio- and Diastereocontrols. ACS Catal. 2020, 10, 3556–3563. DOI:10.1021/acscatal.9b05606 (j) Hong, Y.; Cui, T.; Ivlev, S.; Xie, X.; Meggers, E. Chiral-at-Iron Catalyst for Highly Enantioselective and Diastereoselective Hetero-Diels–Alder Reaction. Chem. Eur. J. 2021, 27, 8557–8563. DOI: 10.1002/chem.202100703 (k) Akiyama, T.; Morita, H.; Fuchibe, K. Chiral Brønsted Acid-Catalyzed Inverse Electron-Demand Aza Diels–Alder Reaction. J. Am. Chem. Soc. 2006, 128, 13070–13071. DOI: 10.1021/ja064676r
  2. Winternheimer, D. J.; Shade, R. E.; Merlic, C. A. Methods for Vinyl Ether Synthesis. Synthesis 2010, 15, 2497–2511. DOI: 1055/s-0030-1258166
  3. Ma, Y.; Loub, S.-J.; Hou, Z. Electron-Deficient Boron-Based Catalysts for C–H Bond Functionalisation. Chem. Soc. Rev. 2021, 50, 1945–1967. DOI:1039/d0cs00380h

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 【8月開催】マイクロ波化学のQ&A付きセミナー
  2. 化学系研究室ホームページ作成ガイド
  3. JSRとはどんな会社?-2
  4. 【イベント】「化学系学生のための企業研究セミナー」「化学系女子学…
  5. STAP細胞問題から見えた市民と科学者の乖離ー前編
  6. CEMS Topical Meeting Online 超分子ポ…
  7. 孫悟飯のお仕事は?
  8. 研究者のためのCG作成術④(レンダリング編)

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 粉いらずの指紋検出技術、米研究所が開発
  2. テトラブチルアンモニウムジフルオロトリフェニルシリカート:Tetrabutylammonium Difluorotriphenylsilicate
  3. ここまでできる!?「DNA折り紙」の最先端 ③ ~立体を作ろう! 編~
  4. Metal-Organic Frameworks: Applications in Separations and Catalysis
  5. 山東信介 Shinsuke Sando
  6. 金属錯体化学を使って神経伝達物質受容体を選択的に活性化する
  7. エーテルがDiels–Alder反応?トリチルカチオンでin situ 酸化DA!
  8. ヘロナミドA Heronamide A
  9. 第五回 化学の力で生物システムを制御ー浜地格教授
  10. エヴァンスアルドール反応 Evans Aldol Reaction

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年6月
 12345
6789101112
13141516171819
20212223242526
27282930  

注目情報

注目情報

最新記事

小山 靖人 Yasuhito Koyama

小山 靖人(こやま やすひと)は、日本の有機化学者。富山県立大学工学部医薬品工学…

ポンコツ博士の海外奮闘録XIV ~博士,釣りをする~

シリーズ累計20話!!タイトルの○数字がなくなりました。節々の回は出来る限り実験ネタや個人的なグッと…

定型抗精神病薬 「ピモジド」の化学修飾により新規難治性疼痛治療薬として極めて有望な化合物の創製に成功

第445回のスポットライトリサーチは、近畿大学大学院 薬学研究科 薬学専攻 病態薬理学研究室の笠波 …

【好評につきリピート開催】マイクロ波プロセスのスケールアップ〜動画で実証設備を紹介!〜 ケミカルリサイクル、乾燥炉、ペプチド固相合成、エステル交換、凍結乾燥など

<内容>マイクロ波プロセスのスケールアップがどのように実現されるか、実証設備の動画も交えてご紹介…

三井化学、DXによる企業変革の成果を動画で公開

三井化学株式会社は、常務執行役員 CDO 三瓶 雅夫による、三井化学グループ全社でのDX推進の取り組…

消光団分子の「ねじれ」の制御による新たな蛍光プローブの分子設計法の確立

第444回のスポットライトリサーチは、東京大学薬学部/大学院薬学系研究科 薬品代謝化学教室に在籍され…

マテリアルズ・インフォマティクスの手法:条件最適化に用いられるベイズ最適化の基礎

開催日:2022/11/30  申込みはこちら■開催概要近年、少子高齢化、働き手の不足の…

製薬系企業研究者との懇談会

日本薬学会医薬化学部会にある創薬ニューフロンティア(NF)検討会は,「学生のモチベーションやキャリア…

電子1個の精度で触媒ナノ粒子の電荷量を計測

第443回のスポットライトリサーチは、九州大学大学院工学研究院エネルギー量子工学部門 超顕微解析研究…

ハットする間にエピメリ化!Pleurotinの形式合成

天然物Pleurotinの形式合成が報告された。可視光による光エノール化/Diels–Alder反応…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP