[スポンサーリンク]

化学者のつぶやき

炭素ー炭素結合を切る触媒

炭素-炭素結合生成反応は、有機化合物を “組み立てる” ために最重要たる反応であり、そのため古くから膨大な研究がなされてきています。最近では環境保護意識の高まりから、単に炭素をつなぐだけでは飽き足らず、アトムエコノミーの高さや、廃棄物の少なさ、化学・位置・立体選択性に優れた反応が求められるようになっています。

炭素-炭素結合を切断して、それを多重結合に付加させることができれば、アトムエコノミーの観点からも効率的です。

炭素-炭素結合を切って組み替える反応の代表例はご存じオレフィンメタセシスです。これは二重結合を切断して組み替えることによって、新たな炭素結合を作り出します。

今回紹介するのは二重結合でなく、炭素-炭素単結合を切断して新しい炭素骨格を作り出す反応です。

 

どうやって炭素-炭素単結合を切るのか?

ところで切断、切断と言っていますが、はさみで切断するわけではありません(笑)。どのように切断するのでしょうか?まずここから簡単に説明したいと思います。

炭素-炭素結合は、数ある化学結合のなかでもかなり丈夫な部類に入ります。普通は組み替えるどころか、切ることすら出来ません。

ここで結合を切断する”はさみ”の役割をするのが、遷移金属触媒です。

以下に「酸化的付加」で切断するケースの模式図を示します。炭素-炭素結合が遷移金属(M)に酸化的付加することで、結合が切断されます。その後多重結合が配位→挿入し、還元的脱離により元の炭素化合物が付加した新しい化合物が得られます。

こうやって図で見るだけなら簡単そうなのですが、実はとんでもなく難しい反応です。

炭素-炭素二重結合の切断に比べ、単結合の切断はさらに高難度とされています。切断を起こすには、標的とする炭素-炭素結合に金属触媒が近づけなくてはなりません。通常、それはπ結合への配位によって達成されます。しかし単結合の場合、足がかりとなるπ結合が近くにないため、接近→切断の過程が起こりづらいのです。

 もちろん条件を厳しくすればなんとかなる場合もあります。しかしそうすると大抵は、何でもかんでもランダムに切ってしまう結果になります。有機化合物の骨格をつくりあげる結合を、どれもこれも切ってしまってはものづくりに使える反応にはなりません。狙った結合だけを切れる反応が必要です。

 そのための触媒や反応剤に、工夫やトリックが隠されています。最近報告された優れた研究例を以下に紹介します。

最近の優れた研究例

Junら1)は触媒量のWilkinson錯体と2-アミノピコリン存在下に、カルボニル隣接位の炭素-炭素単結合を触媒的に切断し、オレフィン交換を起こすことに成功しています。

通常このような切断は起こりませんが、2-アミノピコリンとケトンが系内で配位性イミンを形成し、そこに金属が配位して接近することで、カルボニル隣接位の結合が酸化的付加することができるようになります。

村上ら2)は、触媒量のロジウム錯体とシクロブタノンを反応させると、カルボニル基の隣でシクロブタノンが切断され、分子内環化反応が進行することを見出しました。配位性置換基を利用せずに炭素-炭素結合の切断を達成している点で、インパクトの大きな報告となっています。これはシクロブタノンが歪んでおり、結合性軌道が外に張り出しているため金属と配位しやすくなっているためです。基質にトリックがあるというわけですね。

また檜山中尾3)らは、ニッケル触媒を用いることで、シアノベンゼンの炭素-炭素結合を以下のはさみの箇所で切断し、多重結合へ挿入させて新しい化合物を作り上げることに成功しました。

 

切断される箇所の官能基がシアノ基であることがトリックです。反応機構は以下のように提唱されています。

 まずは冒頭の模式図同様、ニッケル触媒にシアノベンゼンの炭素-炭素単結合が酸化的付加します。このためにニッケル触媒が近づけなくてはならないのですが、シアノ基のπ結合があるため、特別近づきやすくなるのです。引き続いてアルキンが挿入反応して還元的脱離することにで、触媒反応が進行するのです。用いる配位子(PMe3)の選択も重要であるようです。R1, R2のサイズに違いがあると、位置選択性が発現してきます。ニッケル触媒との反発があるためです。

 酸化的付加の段階が律速段階のようで、電子豊富なアリール基を用いると反応が遅くなるという制限もありますが、とても興味深い、斬新な反応と言えるでしょう。

 以上、ごくごく簡単ではありますが、炭素-炭素単結合の切断・組み替えを行いうる触媒反応について紹介しました。より詳しく勉強したい方は”C-C bond Activation”で検索すると、関連論文が沢山出てくると思いますので、そちらをご覧頂ければとおもいます。

(2005.5.9 ブレビコミン)
(2015.2.4 cosine 加筆修正)

(※本記事は以前公開されたものを加筆修正して「つぶやき」に移行したものです)

参考文献

1) C.-H Jun et al., J. Am. Chem. Soc., 121, 880 (1999).

2) M. Murakami et al., J. Am. Chem. Soc., 124, 13976 (2002).

3) T. Hiyama et al., J. Am. Chem. Soc., 126, 13904 (2005).

・高橋 保, 菅野研一郎, 有合化, 61, 938 (2003).

 

関連書籍

The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. マルチディスプレイを活用していますか?
  2. 高機能な導電性ポリマーの精密合成法の開発
  3. C-H酸化反応の開発
  4. 糖鎖クラスター修飾で分子の生体内挙動を制御する
  5. 自在に分解できるプラスチック:ポリフタルアルデヒド
  6. 砂糖水からモルヒネ?
  7. 暑いほどエコな太陽熱冷房
  8. 学生に化学論文の書き方をどうやって教えるか?

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 【書籍】「喜嶋先生の静かな世界」
  2. 長井長義の日記など寄贈 明治の薬学者、徳島大へ
  3. ビシュラー・ナピエラルスキー イソキノリン合成 Bischler-Napieralski Isoquinoline Synthesis
  4. インタビューリンクー時任・中村教授、野依理事長
  5. プレヴォスト/ウッドワード ジヒドロキシル化反応 Prevost/Woodward Dihydroxylation
  6. 二次元物質の科学 :グラフェンなどの分子シートが生み出す新世界
  7. 緑茶成分テアニンに抗ストレス作用、太陽化学、名大が確認
  8. 新日石、地下資源開発に3年で2000億円投資
  9. 三菱化学グループも石化製品を値上げ、原油高で価格転嫁
  10. ポリエチレンとポリプロピレン、7カ月ぶり値上げ浸透

関連商品

注目情報

注目情報

最新記事

2018年3月2日:ケムステ主催「化学系学生対象 企業合同説明会」

2月も後半となり、3月1日の就活解禁に向けて、2019年卒業予定の学生のみなさんは、就活モードが本格…

高専シンポジウム in KOBE に参加しました –その 2: 牛の尿で発電!? 卵殻膜を用いた燃料電池–

1 月 27 日に開催された第 23 回 高専シンポジウム in KOBE の参加報告の後編です。前…

化学探偵Mr.キュリー7

昨年3月からついに職業作家となった、化学小説家喜多喜久氏。その代表作である「化学探偵Mr.キュリー」…

き裂を高速で修復する自己治癒材料

第139回目のスポットライトリサーチは、物質・材料研究機構(NIMS) 構造材料研究拠点 長田 俊郎…

新コース開講! 東大発の無料オンライン英語講座!

研究室でのプレゼン、国際学会、海外留学など、国際化する研究環境にいまや英語は欠かせません。Engli…

脱水素型クロスカップリング重合法の開発

第138回目のスポットライトリサーチは、筑波大学 神原・桑原研究室の青木 英晃さん(博士前期課程2年…

Chem-Station Twitter

PAGE TOP