[スポンサーリンク]

化学者のつぶやき

炭素ー炭素結合を切る触媒

[スポンサーリンク]

炭素-炭素結合生成反応は、有機化合物を “組み立てる” ために最重要たる反応であり、そのため古くから膨大な研究がなされてきています。最近では環境保護意識の高まりから、単に炭素をつなぐだけでは飽き足らず、アトムエコノミーの高さや、廃棄物の少なさ、化学・位置・立体選択性に優れた反応が求められるようになっています。

炭素-炭素結合を切断して、それを多重結合に付加させることができれば、アトムエコノミーの観点からも効率的です。

炭素-炭素結合を切って組み替える反応の代表例はご存じオレフィンメタセシスです。これは二重結合を切断して組み替えることによって、新たな炭素結合を作り出します。

今回紹介するのは二重結合でなく、炭素-炭素単結合を切断して新しい炭素骨格を作り出す反応です。

 

どうやって炭素-炭素単結合を切るのか?

ところで切断、切断と言っていますが、はさみで切断するわけではありません(笑)。どのように切断するのでしょうか?まずここから簡単に説明したいと思います。

炭素-炭素結合は、数ある化学結合のなかでもかなり丈夫な部類に入ります。普通は組み替えるどころか、切ることすら出来ません。

ここで結合を切断する”はさみ”の役割をするのが、遷移金属触媒です。

以下に「酸化的付加」で切断するケースの模式図を示します。炭素-炭素結合が遷移金属(M)に酸化的付加することで、結合が切断されます。その後多重結合が配位→挿入し、還元的脱離により元の炭素化合物が付加した新しい化合物が得られます。

こうやって図で見るだけなら簡単そうなのですが、実はとんでもなく難しい反応です。

炭素-炭素二重結合の切断に比べ、単結合の切断はさらに高難度とされています。切断を起こすには、標的とする炭素-炭素結合に金属触媒が近づけなくてはなりません。通常、それはπ結合への配位によって達成されます。しかし単結合の場合、足がかりとなるπ結合が近くにないため、接近→切断の過程が起こりづらいのです。

 もちろん条件を厳しくすればなんとかなる場合もあります。しかしそうすると大抵は、何でもかんでもランダムに切ってしまう結果になります。有機化合物の骨格をつくりあげる結合を、どれもこれも切ってしまってはものづくりに使える反応にはなりません。狙った結合だけを切れる反応が必要です。

 そのための触媒や反応剤に、工夫やトリックが隠されています。最近報告された優れた研究例を以下に紹介します。

最近の優れた研究例

Junら1)は触媒量のWilkinson錯体と2-アミノピコリン存在下に、カルボニル隣接位の炭素-炭素単結合を触媒的に切断し、オレフィン交換を起こすことに成功しています。

通常このような切断は起こりませんが、2-アミノピコリンとケトンが系内で配位性イミンを形成し、そこに金属が配位して接近することで、カルボニル隣接位の結合が酸化的付加することができるようになります。

村上ら2)は、触媒量のロジウム錯体とシクロブタノンを反応させると、カルボニル基の隣でシクロブタノンが切断され、分子内環化反応が進行することを見出しました。配位性置換基を利用せずに炭素-炭素結合の切断を達成している点で、インパクトの大きな報告となっています。これはシクロブタノンが歪んでおり、結合性軌道が外に張り出しているため金属と配位しやすくなっているためです。基質にトリックがあるというわけですね。

また檜山中尾3)らは、ニッケル触媒を用いることで、シアノベンゼンの炭素-炭素結合を以下のはさみの箇所で切断し、多重結合へ挿入させて新しい化合物を作り上げることに成功しました。

 

切断される箇所の官能基がシアノ基であることがトリックです。反応機構は以下のように提唱されています。

 まずは冒頭の模式図同様、ニッケル触媒にシアノベンゼンの炭素-炭素単結合が酸化的付加します。このためにニッケル触媒が近づけなくてはならないのですが、シアノ基のπ結合があるため、特別近づきやすくなるのです。引き続いてアルキンが挿入反応して還元的脱離することにで、触媒反応が進行するのです。用いる配位子(PMe3)の選択も重要であるようです。R1, R2のサイズに違いがあると、位置選択性が発現してきます。ニッケル触媒との反発があるためです。

 酸化的付加の段階が律速段階のようで、電子豊富なアリール基を用いると反応が遅くなるという制限もありますが、とても興味深い、斬新な反応と言えるでしょう。

 以上、ごくごく簡単ではありますが、炭素-炭素単結合の切断・組み替えを行いうる触媒反応について紹介しました。より詳しく勉強したい方は”C-C bond Activation”で検索すると、関連論文が沢山出てくると思いますので、そちらをご覧頂ければとおもいます。

(2005.5.9 ブレビコミン)
(2015.2.4 cosine 加筆修正)

(※本記事は以前公開されたものを加筆修正して「つぶやき」に移行したものです)

参考文献

1) C.-H Jun et al., J. Am. Chem. Soc., 121, 880 (1999).

2) M. Murakami et al., J. Am. Chem. Soc., 124, 13976 (2002).

3) T. Hiyama et al., J. Am. Chem. Soc., 126, 13904 (2005).

・高橋 保, 菅野研一郎, 有合化, 61, 938 (2003).

 

関連書籍

cosine

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. ケムステのライターになって良かったこと
  2. ナノグラムの油状試料もなんのその!結晶に封じて分子構造を一発解析…
  3. 元素周期 萌えて覚える化学の基本
  4. その化合物、信じて大丈夫ですか? 〜創薬におけるワルいヤツら〜
  5. なぜ青色LEDがノーベル賞なのか?ー性能向上・量産化編
  6. ハメット則
  7. 「大津会議」参加体験レポート
  8. 【イベント】「化学系学生のための企業研究セミナー」「化学系女子学…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 誰でも使えるイオンクロマトグラフ 「Eco IC」新発売:メトローム
  2. がん治療にカレー成分-東北大サイエンスカフェ
  3. 相間移動触媒 Phase-Transfer Catalyst (PTC)
  4. 論文のチラ見ができる!DeepDyve新サービス開始
  5. 第95回日本化学会付設展示会ケムステキャンペーン!Part II
  6. ちょっとキレイにサンプル撮影
  7. 化学に触れる学びのトレイン“愛称”募集
  8. ChemDrawの開発秘話〜SciFinder連携機能レビュー
  9. トリス(2,4-ペンタンジオナト)鉄(III):Tris(2,4-pentanedionato)iron(III)
  10. ニトリルオキシドの1,3-双極子付加環化 1,3-Dipolar Cycloaddition of Nitrile Oxide

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

2021年化学企業トップの年頭所感を読み解く

2021年が本格始動し始めている中、化学企業のトップが年の初めに抱負や目標を述べる年頭所感を続々と発…

転職を成功させる「人たらし」から学ぶ3つのポイント

転職活動を始めた場合、まずは自身が希望する職種、勤務地、年収などの条件を元にインターネットで求人を検…

mRNAワクチン(メッセンジャーRNAワクチン)

病原体のタンパクをコードしたmRNAをベースとしたワクチン。従来のワクチンは、弱毒化・不活化した病原…

第139回―「超高速レーザを用いる光化学機構の解明」Greg Scholes教授

第139回の海外化学者インタビューはグレッグ・ショールズ教授です。トロント大学化学科(訳注:現在はプ…

分子の対称性が高いってどういうこと ?【化学者だって数学するっつーの!: 対称操作】

群論を学んでいない人でも「ある分子の対称性が高い」と直感的に言うことはできるかと思います。しかし分子…

非古典的カルボカチオンを手懐ける

キラルなブレンステッド酸触媒による非古典的カルボカチオンのエナンチオ選択的反応が開発された。低分子触…

CEMS Topical Meeting Online 機能性材料の励起状態化学

1月28日に毎年行われている理研の無料シンポジウムが開催されるようです。事前参加登録が必要なので興味…

カルボン酸に気をつけろ! グルクロン酸抱合の驚異

 カルボン酸は、カルボキシ基 (–COOH) を有する有機化合物の一群です。カルボン…

Chem-Station Twitter

PAGE TOP