[スポンサーリンク]

化学者のつぶやき

人を器用にするDNAーナノ化学研究より

 

 

「俺のDNAにはナニかを形作るナニかが刻みこまれている!」

みたいないいまわしは時々、漫画か何かででてきそうな科白です。

そして実際にDNAには何かを形作る“ナニか”はあるのです。

 

DNAとナノ粒子を使ってつくる、超分子的なストラクチャーを作るの研究は20年くらい前から始まったのですが、ここ最近でノースウエスタン大学のMirkinグループを中心に劇的な進歩が見られていて、非常にアツいので紹介したいと思います。

DNAとは、4つの基本ユニットであるATCGと呼ばれる分子が連なる分子のことです。(*1)

この4つのユニットはAとT、CとGが選択的に接合します。ちょうど2対のはめ込み式のボタンのようなものです。

このはめ込みボタンが、うまく揃った時、(つまり例えば長いAの連なりとTの連なりがあるとき、)一対一対が吸着しあい、DNAはお互いをジップします。

 

ナノパーティクルにDNAをくっつけてなにか面白いこと出来ないか?ということで発表されたのが1996年のことで、AlivisatosグループとMirkinグループから同じ号のNatureに掲載されました。(ライバルグループが同じ号のNatureに同じテーマで掲載とは、これまた「生物と無生物の間」的なドラマがありそうな予感ですねぇ)

2015-07-31_01-46-38

 

ナノ粒子とDNAが上手くくっつく絵 (文献1bより)

当時は、TEMでナノ粒子同士のくっつき方をコントロールしたり、もしくは単にナノ粒子が水に溶けているか、溶けないかをコントロールするものだったのですが(*2)、それから時はたち約20年後、この技術は物凄く洗練されています。

 

例えば、ナノ粒子のある表面に選択的にDNAを配することにより、ナノ粒子同士が吸着する面が制御され、結果色々な形が出来上がります。

様々な形のナノ粒子を、接着剤としてDNAを使い、様々なアーキテクチャを作る。まさにプラモデル的。(*3)

2015-07-31_01-48-40

ナノ粒子とDNAによって作られる構造の一例 (文献2bより)

 

さらに最近のリポートでは、特定の部分にスペーサーを配することによって、 より密度の低いストラクチャーを作ったりしていて、まさに彼らに作れない構造はないのではという疑惑まで浮上してしまいます。

 

2015-07-31_01-50-09

ナノパーティクルとDNAそしてスペーサーによって作られる構造の一部 (文献2dより)

いやはやナノの世界を完全に制している気すらします。

このように生物の中にあるDNAという分子とナノ化学の分野が合体すると、人はナノメートル単位で3次元構造を操ることができるようになってきています。さてさて人はこれからどれだけ”器用”になれるのでしょうか?そしてその先にはナニが出来るようになっているのでしょうか?

福岡伸一先生の「生物と無生物のあいだ」ではありませんが、「バイオロジカルとナノ化学のあいだ」で生まれるこれらの研究にこれからも目が離せません!

 

(*1)正確にいうとDNAはリン酸と塩基の2つからなり、その塩基が4種類あるということです。

(*2)溶ける、溶けないという表現はコロイド系のナノパーティクルの分散系では厳密な意味では正しくなく、性格には分散(dispersed)と凝集(aggregated)という意味です。この場合ナノ粒子の表面にsingle strandのDNAを配置しているものを見ていて、十分に小さくまた表面がDNAにより親水化されている粒子は通常の状態では水系、もしくは一定のイオン濃度をもつ水系で、分散します。

(*3)ただし、これらは全てThermodynamicに安定な経路でできているわけではなく、つまりKinetics的なPathwayも重要な要素と考えられているので、接着剤的な表現はその意味では雑です。

 

参照文献

  1. (a) Mirkin C. et al  Nature 382, 607 – 609 (15 August 1996); doi:10.1038/382607a0 (b) Alivisatos P. et al. Nature 382, 609 – 611 (15 August 1996); doi:10.1038/382609a0
  2. (a) Mirkin C. et al  Nature 451, 553-556 (31 January 2008) doi:10.1038/nature06508 (b) Nature Mater. 9, 913–917 (2010). DOI: 10.1038/NMAT2870 (c) Science 334, 204–208 (2011) DOI:10.1126/science.1210493 (d) Nature Nanotech. 7,24–28(2012)doi:10.1038/nnano.2011.222

関連記事

  1. Reaxys Ph.D Prize2014ファイナリスト45名発…
  2. 超分子ポリマーを精密につくる
  3. 電子実験ノートもクラウドの時代? Accelrys Notebo…
  4. 目指せ!フェロモンでリア充生活
  5. シクロプロパンの数珠つなぎ
  6. 日本薬学会第138年会 付設展示会ケムステキャンペーン
  7. 未来の化学者たちに夢を
  8. 【PR】Chem-Stationで記事を書いてみませんか?【スタ…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. マーティン・バーク Martin D. Burke
  2. pre-MIBSK ~Dess-Martin試薬と比べ低コスト・安全なアルコール酸化触媒~
  3. 合成後期多様化法 Late-Stage Diversification
  4. 臭いの少ない1,3-プロパンジチオール等価体
  5. 檜山クロスカップリング Hiyama Cross Coupling
  6. アミドをエステルに変化させる触媒
  7. 卒論・修論にむけて〜わかりやすく伝わる文章を書こう!〜
  8. 武田や第一三共など大手医薬、特許切れ主力薬を「延命」
  9. サミュエル・ダニシェフスキー Samuel J. Danishefsky
  10. ドナルド・トマリア Donald Tomalia

関連商品

注目情報

注目情報

最新記事

分子で作る惑星、その名もナノサターン!

2018年、東工大の豊田真司先生らによって、まるで土星を型どったような分子の合成が報告された。フラー…

磯部 寛之 Hiroyuki Isobe

磯部寛之(いそべひろゆき、1970年11月9日–東京都生まれ)は日本の有機化学者である。東京大学理学…

死海付近で臭素が漏洩

イスラエル警察は死海付近の向上から臭素が漏れだしたことを明らかにし、付近住民に自宅にとどまるよう呼び…

光触媒反応用途の青色LED光源を比較してみた

巷で大流行の可視光レドックス触媒反応ですが、筆者のラボでも活用するようになりました。しかし経…

宮沢賢治の元素図鑑

概要本書は宮沢賢治の作品に登場する元素を取り上げ、作品を入り口として各元素について解説した書…

電子豊富芳香環に対する触媒的芳香族求核置換反応

2017年、ノースカロライナ大学チャペルヒル校・David Nicewiczらは、可視光レドックス触…

Chem-Station Twitter

PAGE TOP