[スポンサーリンク]

化学者のつぶやき

人を器用にするDNAーナノ化学研究より

 

 

「俺のDNAにはナニかを形作るナニかが刻みこまれている!」

みたいないいまわしは時々、漫画か何かででてきそうな科白です。

そして実際にDNAには何かを形作る“ナニか”はあるのです。

 

DNAとナノ粒子を使ってつくる、超分子的なストラクチャーを作るの研究は20年くらい前から始まったのですが、ここ最近でノースウエスタン大学のMirkinグループを中心に劇的な進歩が見られていて、非常にアツいので紹介したいと思います。

DNAとは、4つの基本ユニットであるATCGと呼ばれる分子が連なる分子のことです。(*1)

この4つのユニットはAとT、CとGが選択的に接合します。ちょうど2対のはめ込み式のボタンのようなものです。

このはめ込みボタンが、うまく揃った時、(つまり例えば長いAの連なりとTの連なりがあるとき、)一対一対が吸着しあい、DNAはお互いをジップします。

 

ナノパーティクルにDNAをくっつけてなにか面白いこと出来ないか?ということで発表されたのが1996年のことで、AlivisatosグループとMirkinグループから同じ号のNatureに掲載されました。(ライバルグループが同じ号のNatureに同じテーマで掲載とは、これまた「生物と無生物の間」的なドラマがありそうな予感ですねぇ)

2015-07-31_01-46-38

 

ナノ粒子とDNAが上手くくっつく絵 (文献1bより)

当時は、TEMでナノ粒子同士のくっつき方をコントロールしたり、もしくは単にナノ粒子が水に溶けているか、溶けないかをコントロールするものだったのですが(*2)、それから時はたち約20年後、この技術は物凄く洗練されています。

 

例えば、ナノ粒子のある表面に選択的にDNAを配することにより、ナノ粒子同士が吸着する面が制御され、結果色々な形が出来上がります。

様々な形のナノ粒子を、接着剤としてDNAを使い、様々なアーキテクチャを作る。まさにプラモデル的。(*3)

2015-07-31_01-48-40

ナノ粒子とDNAによって作られる構造の一例 (文献2bより)

 

さらに最近のリポートでは、特定の部分にスペーサーを配することによって、 より密度の低いストラクチャーを作ったりしていて、まさに彼らに作れない構造はないのではという疑惑まで浮上してしまいます。

 

2015-07-31_01-50-09

ナノパーティクルとDNAそしてスペーサーによって作られる構造の一部 (文献2dより)

いやはやナノの世界を完全に制している気すらします。

このように生物の中にあるDNAという分子とナノ化学の分野が合体すると、人はナノメートル単位で3次元構造を操ることができるようになってきています。さてさて人はこれからどれだけ”器用”になれるのでしょうか?そしてその先にはナニが出来るようになっているのでしょうか?

福岡伸一先生の「生物と無生物のあいだ」ではありませんが、「バイオロジカルとナノ化学のあいだ」で生まれるこれらの研究にこれからも目が離せません!

 

(*1)正確にいうとDNAはリン酸と塩基の2つからなり、その塩基が4種類あるということです。

(*2)溶ける、溶けないという表現はコロイド系のナノパーティクルの分散系では厳密な意味では正しくなく、性格には分散(dispersed)と凝集(aggregated)という意味です。この場合ナノ粒子の表面にsingle strandのDNAを配置しているものを見ていて、十分に小さくまた表面がDNAにより親水化されている粒子は通常の状態では水系、もしくは一定のイオン濃度をもつ水系で、分散します。

(*3)ただし、これらは全てThermodynamicに安定な経路でできているわけではなく、つまりKinetics的なPathwayも重要な要素と考えられているので、接着剤的な表現はその意味では雑です。

 

参照文献

  1. (a) Mirkin C. et al  Nature 382, 607 – 609 (15 August 1996); doi:10.1038/382607a0 (b) Alivisatos P. et al. Nature 382, 609 – 611 (15 August 1996); doi:10.1038/382609a0
  2. (a) Mirkin C. et al  Nature 451, 553-556 (31 January 2008) doi:10.1038/nature06508 (b) Nature Mater. 9, 913–917 (2010). DOI: 10.1038/NMAT2870 (c) Science 334, 204–208 (2011) DOI:10.1126/science.1210493 (d) Nature Nanotech. 7,24–28(2012)doi:10.1038/nnano.2011.222

関連記事

  1. Reaxys Prize 2012ファイナリスト45名発表!
  2. ちょっと変わったイオン液体
  3. アルカリ土類金属触媒の最前線
  4. 「ラブ・ケミストリー」の著者にインタビューしました。
  5. 水素社会~アンモニアボラン~
  6. 2014年ノーベル化学賞・物理学賞解説講演会
  7. 産業界のニーズをいかにして感じとるか
  8. 論説フォーラム「研究の潮目が変わったSDGsは化学が主役にーさあ…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 力学的エネルギーで”逆”クリック!
  2. ロジウム(I)触媒を用いるアリールニトリルの炭素‐シアノ基選択的な切断とホウ素化反応
  3. 合同資源上瀑工場
  4. 田辺シリル剤
  5. 中学入試における化学を調べてみた
  6. 有機EL素子の開発と照明への応用
  7. 立春の卵
  8. 9,10-Dihydro-9,10-bis(2-carboxyethyl)-N-(4-nitrophenyl)-10,9-(epoxyimino)anthracene-12-carboxamide
  9. Ns基とNos基とDNs基
  10. 有機反応を俯瞰するシリーズーまとめ

関連商品

注目情報

注目情報

最新記事

クラリベイト・アナリティクスが「引用栄誉賞2018」を発表

9月20日、クラリベイト・アナリティクス社から2018年の引用栄誉賞が発表されました。本賞は…

AIで世界最高精度のNMR化学シフト予測を達成

理化学研究所(理研)環境資源科学研究センター環境代謝分析研究チームの菊地淳チームリーダー、伊藤研悟特…

イミニウム励起触媒系による炭素ラジカルの不斉1,4-付加

2017年、カタルーニャ化学研究所・Paolo Melchiorreらは、イミニウム有機触媒系を可視…

ケムステ版・ノーベル化学賞候補者リスト【2018年版】

各媒体からかき集めた情報を元に、「未来にノーベル化学賞の受賞確率がある化学者」をリストアップしていま…

巨大複雑天然物ポリセオナミドBの細胞死誘導メカニズムの解明

第161回目のスポットライトリサーチは、早田敦 (はやた あつし)さんにお願いしました。早田…

イグノーベル化学賞2018「汚れ洗浄剤としてヒトの唾液はどれほど有効か?」

Tshozoです。今年もIg Nobel賞、発表されましたね。色々と興味深い発表が続く中、NHKで放…

PAGE TOP