[スポンサーリンク]

化学者のつぶやき

ぱたぱた組み替わるブルバレン誘導体を高度に置換する

[スポンサーリンク]

容易に合成可能なビシクロ[3.2.2]ノナン骨格を利用した、簡潔でエナンチオ選択的に多様な官能基をもつバルバラロンを合成することに成功した。また、他のブルバレン誘導体の合成も達成した。

ブルバレン誘導体の合成法開発

ブルバレン(1)は1963年DoeringとRothによって提唱された、シクロプロパンと3つのシクロヘプタジエンを含む対称性分子である(図1A)[1,2]Cope転位により全てのC–C結合が組み変わるため、分子を構成する全ての炭素と水素が等価という特異な性質をもつ。

ブルバレンやバルバラロン(2)、ブルバロン(3)などの変形性分子は、その興味深い物性だけでなく、生物活性分子や新奇触媒としても注目され、その合成は古くから試みられてきた[3]。しかし、1と比較して、23の合成報告はきわめて少ない。例えば、2の合成はカルベンを利用したシクロヘプタトリエンとの環化[4]やビシクロ[4.2.1]オクタトリエノン中間体[5]の異性化に限られる(図1B)。3に関しては、2の増炭反応による合成例のみである[4,5]。これらの変形性分子の迅速かつエナンチオ選択的な合成法は、変形性分子の有用性を大きく向上させると期待される。

Maimoneらは以前、ビシクロ[3.3.1]ノナン骨格を含む天然物ocellatusone Cの迅速合成を達成した(図1C)[6]。ビシクロ[3.2.2]ノナン骨格とバルバラロンの平衡を利用した、合成終盤における側鎖の導入が合成の要であった[7]。今回著者らは、光学活性なビシクロ[3.2.2]ノナン骨格を(光異性化後に)トリフラート化したのち、カップリング反応に付すことで、多様な置換基をもつバルバラロン誘導体を合成した(図1D)[8]。さらに、バルバラロン誘導体からバルバロンやブルバレンへの変換も達成した。

図1. (A) ブルバレン (B)バルバラロンの合成 (C) 先行研究 (D) 本研究

 

“Modular, Enantioselective Entry into Polysubstituted Shapeshifting Molecules”

Sanchez, A.; Gonzalez, V. M.; Sakamoto, J.; Gurajapu, A.; Maimone, T. J. J. Am. Chem. Soc. 2024, 146, 17573–17579. DOI: 10.1021/jacs.4c03323 

論文著者の紹介

研究者:Thomas J. Maimone

研究者の経歴:
2004                                          B.Sc., University of California, Berkeley, USA (Prof. Dirk Trauner)
2009                                          Ph.D., The Scripps Research Institute, USA (Prof. Phil S. Baran)
2009–2012         Postdoc, Massachusetts Institute of Technology, USA (Prof. Stephen L. Buchwald)
2012–2018         Assistant Professor, University of California, Berkeley, USA 
2018–2022         Associate Professor, University of California, Berkeley, USA
2022–                                       Professor, University of California, Berkeley, USA

研究内容:天然物合成、反応開発

 

論文の概要

著者らはまず、不斉アルミニウム触媒によるケテンジエチルアセタール4とトロポン5とのDiels–Alder反応により、高収率かつ高いエナンチオ選択性で6を得た(図2A)[9]6に種々のクロスカップリング反応を適用し、様々な置換基をもつビシクロ[3.2.2]ノナンジオン7を合成した。次に、ビシクロ骨格からバルバラロンへの変換を試みた。7にKHMDSを作用させた後、コミンズ試薬を添加することで、トリフラート8aが得られた(path a, 図2A)。また、7に紫色光を照射して光異性化させた後、LiHMDSを用いてpath a同様にトリフラート化することで、8aとは置換基の位置が異なる8bが単一のエナンチオマーとして得られた(path b, 図2A)。その後、トリフラート8a8bを再びカップリング反応させることで、複数種類の置換基をもつ2置換バルバラロン9の合成を達成した。

続いて、変形性分子を含む不斉配位子の合成を目指し、9へのホスフィン置換基の導入を試みた。ビシクロ骨格7aをトリフラート化し、続く鈴木・宮浦カップリングにより9aaを得た。その後、Pd(OAc)2触媒存在下、9aaにジシクロヘキシルホスフィンを導入し、10の合成に成功した(図2B)。さらに、二置換バルバラロン9ab9bbをTMSジアゾメタンによって増炭し、二置換ブルバロン11a11bに導いた。これらは、トリフラート化と続くPd触媒によるカップリング反応により、二置換または三置換ブルバレン12へと変換することができた(図2C)。

図2. (A) バルバラロン誘導体合成 (B) ホスフィン置換 (C) 多置換ブルバラン合成

 

以上、ビシクロ[3.2.2]ノナン骨格の反応性を利用することで、置換バルバラロンや置換ブルバロンなどの広範な変形性分子を、迅速かつエナンチオ選択的に合成することに成功した。本手法により、変形性分子に関する研究の発展が期待される。

参考文献

  1. von E. Doering, W.; Roth, W. R. A Rapidly Reversible Degenerate Cope Rearrangement. Tetrahedron 1963, 19, 715–737. DOI: 1016/s0040-4020(01)99207-5
  2. Ault, A. The Bullvalene Story. The Conception of Bullvalene, a Molecule That Has No Permanent Structure. Chem. Educ. 2001, 78, 924. DOI: 10.1021/ed078p924
  3. Bismillah, A. N.; Chapin, B. M.; Hussein, B. A.; McGonigal, P. R. Shapeshifting Molecules: The Story so Far and the Shape of Things to Come. Chem. Sci. 2020, 11, 324–332. DOI: 10.1039/c9sc05482k
  4. (a) von E. Doering, W.; Ferrier, B. M.; Fossel, E. T.; Hartenstein, J. H.; Jones, M., Jr.; Klumpp, G.; Rubin, R. M.; Saunders, M. A Rational Synthesis of Bullvalene Barbaralone and Derivatives; Bullvalone. Tetrahedron 1967, 23, 3943–3963. DOI: 1016/s0040-4020(01)97904-9 (b) Ferrer, S.; Echavarren, A. M. Synthesis of Barbaralones and Bullvalenes Made Easy by Gold Catalysis. Angew. Chem., Int. Ed. 2016, 55, 11178–11182. DOI: 10.1002/anie.201606101
  5. (a) Paquette, L. A.; Meisinger, R. H.; Wingard, R. E., Jr. Bishomoconjugative .Alpha.-Halo Ketone Rearrangement as a Route to Bicyclo[4.2.1]Nona-2,4,7-Trien-9-One and Barbaralone Derivatives. Am. Chem. Soc. 1972, 94, 2155–2157. DOI: 10.1021/ja00761a084 (b) Feldman, K. S.; Come, J. H.; Fegley, G. J.; Smith, B. D.; Parvez, M. Synthesis of the Barbaralone Nucleus via Photocyclization of an Alkynyl Tropone. Tetrahedron Lett. 1987, 28, 607–610. DOI: 10.1016/s0040-4039(00)95792-7
  6. (a)Sanchez, A.; Maimone, T. J. Taming Shapeshifting Anions: Total Synthesis of Ocellatusone C. J. Am. Chem. Soc. 2022, 144, 7594–7599. DOI: 10.1021/jacs.2c02627 (b) Sanchez, A.; Gurajapu, A.; Guo, W.; Kong, W.-Y.; Laconsay, C. J.; Settineri, N. S.; Tantillo, D. J.; Maimone, T. J. A Shapeshifting Roadmap for Polycyclic Skeletal Evolution. J. Am. Chem. Soc. 2023, 145, 13452–13461. DOI: 10.1021/jacs.3c03960
  7. Grutzner, J. B.; Winstein, S. Bicycloaromaticity. Stability and Rearrangements of the Bicyclo[3.2.2]Nonatrienyl Anion Cation. J. Am. Chem. Soc. 1972, 94, 2200–2208. DOI: 10.1021/ja00762a008
  8. (a) Houk, K. N. The Photochemistry and Spectroscopy of b, g-Unsaturated Carbonyl Compounds. Chem. Rev. 1976, 76, 1–74. DOI: 10.1021/cr60299a001(b) Zimmerman, H. E.; Armesto, D. Synthetic Aspects of the Di-p-Methane Rearrangement. Chem. Rev. 1996, 96, 3065–3112. DOI: 10.1021/cr910109c
  9. Li, P.; Yamamoto, H. Lewis Acid Catalyzed Inverse-Electron-Demand Diels−Alder Reaction of Tropones. J. Am. Chem. Soc. 2009, 131, 16628–16629. DOI: 10.1021/ja908127f

 

Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 学術変革領域研究(A) 「デジタル有機合成」発足とキックオフシン…
  2. 論文チェックと文献管理にお困りの方へ:私が実際に行っている方法を…
  3. 逐次的ラジカル重合によるモノマー配列制御法
  4. 企業の研究を通して感じたこと
  5. 新型コロナの飲み薬モルヌピラビルの合成・生体触媒を用いた短工程化…
  6. 子育て中の40代女性が「求人なし」でも、専門性を生かして転職を実…
  7. Rice cooker
  8. 二酸化炭素をメタノールに変換する有機分子触媒

注目情報

ピックアップ記事

  1. プラテンシマイシン /platensimycin
  2. NIMS WEEK2021-材料研究の最新成果発表週間- 事前登録スタート
  3. 【書籍】合成化学の新潮流を学ぶ:不活性結合・不活性分子の活性化
  4. 化学は切手と縁が深い
  5. カルシウムイオン濃度をモニターできるゲル状センサー
  6. ジオキシラン酸化 Oxidation with Dioxirane
  7. インドの化学ってどうよ
  8. ビニルシクロプロパン転位 Vinylcyclopropane Rearrangement
  9. 化学者のためのエレクトロニクス入門① ~電子回路の歴史編~
  10. 有機合成化学協会誌2018年10月号:生物発光・メタル化アミノ酸・メカノフルオロクロミズム・ジベンゾバレレン・シクロファン・クロミック分子・高複屈折性液晶・有機トランジスタ

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2024年11月
 123
45678910
11121314151617
18192021222324
252627282930  

注目情報

最新記事

創薬懇話会2025 in 大津

日時2025年6月19日(木)~6月20日(金)宿泊型セミナー会場ホテル…

理研の研究者が考える未来のバイオ技術とは?

bergです。昨今、環境問題や資源問題の関心の高まりから人工酵素や微生物を利用した化学合成やバイオテ…

水を含み湿度に応答するラメラ構造ポリマー材料の開発

第651回のスポットライトリサーチは、京都大学大学院工学研究科(大内研究室)の堀池優貴 さんにお願い…

第57回有機金属若手の会 夏の学校

案内:今年度も、有機金属若手の会夏の学校を2泊3日の合宿形式で開催します。有機金…

高用量ビタミンB12がALSに治療効果を発揮する。しかし流通問題も。

2024年11月20日、エーザイ株式会社は、筋萎縮性側索硬化症用剤「ロゼバラミン…

第23回次世代を担う有機化学シンポジウム

「若手研究者が口頭発表する機会や自由闊達にディスカッションする場を増やし、若手の研究活動をエンカレッ…

ペロブスカイト太陽電池開発におけるマテリアルズ・インフォマティクスの活用

持続可能な社会の実現に向けて、太陽電池は太陽光発電における中心的な要素として注目…

有機合成化学協会誌2025年3月号:チェーンウォーキング・カルコゲン結合・有機電解反応・ロタキサン・配位重合

有機合成化学協会が発行する有機合成化学協会誌、2025年3月号がオンラインで公開されています!…

CIPイノベーション共創プログラム「未来の医療を支えるバイオベンチャーの新たな戦略」

日本化学会第105春季年会(2025)で開催されるシンポジウムの一つに、CIPセッション「未来の医療…

OIST Science Challenge 2025 に参加しました

2025年3月15日から22日にかけて沖縄科学技術大学院大学 (OIST) にて開催された Scie…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー