[スポンサーリンク]

化学者のつぶやき

芳香族トリフラートからアリールラジカルを生成する

[スポンサーリンク]

マギル大学のChao-Jun Liらは、アリールトリフラートから遷移金属なし、紫外光照射条件下で一電子還元を介してアリールラジカルを発生できることを見いだした。またその素過程を用いる、ボリル化・ヨード化を達成した。

“Simple and Efficient Generation of Aryl Radicals from Aryl Triflates: Synthesis of Aryl Boronates and Aryl Iodides at Room Temperature”
Liu, W.; Yang, X.; Gao, Y.; Li, C.-J.* J. Am. Chem. Soc. 2017, 139, 8621-8627. DOI: 10.1021/jacs.7b03538

問題設定と解決した点

アリールラジカルは有機合成上有用な中間体であるが、高活性であるため、その生成方法は限られていた。具体的には、アリールハライド、アリールカルボン酸、アリールボロン酸、アリールジアゾニウム塩などから発生する方法が知られていたが、これらは試薬の毒性や安定性、遷移金属・強力な酸化剤・還元剤の利用などに課題を残していた。

Liらはこれらの問題を回避しつつ容易に入手可能な前駆体からアリールラジカルを発生させることが望ましいと考え、フェノール類から誘導できるアリールトリフラートを前駆体とし、冒頭図のような条件下でアリールラジカルを発生させることに成功した。

技術や手法の肝

遷移金属フリーなアリールラジカル発生法としては、添加剤(塩基や求核剤)存在下にアリールハライドへの一電子還元、引き続く開裂を経る手法が知られていた。しかし、この手法をアリールトリフラートに適応しようとすると、S-O切断によってフェノール類が生じてしまうことが予測される。

今回筆者らは適切な電子ドナーを用いることでこの問題が解決でき、目的とするアリールラジカルが発生できると考えた。そのような電子ドナーとして、ヨウ化ナトリウムを選択したことが、成功の鍵であった[1]。

主張の有効性検証

①アリールラジカルの発生に関して

ベンゼン溶媒下、アリールトリフラートにヨウ化ナトリウムを加えて加熱しても、ビアリール(アリールラジカル+ベンゼンの生成物)は生じなかったが、UV照射下ではビアリールが生じた。また、トリブチルスズヒドリドや四塩化炭素を加えると還元体、クロロ化体がそれぞれ得られた。

分光学的には、アリールトリフラートによる吸光がヨウ化ナトリウム添加によって減ぜられること、ヨウ化ナトリウム添加時にEPRが検出されることから、ラジカルが生じていると考えられる。

②発生したアリールラジカルの有機合成的応用

【ボリルエステル化】アリールラジカルがピナコールジボランと反応してボリル化が進行する。塩基TMDAMを加えると最も良い結果が得られた。パラ位置換体での実証例がほとんどでであるが、アルキル基、電子求引基、電子供与基いずれの置換ベンゼンでも進行している。

【ヨード化】光照射でAr-I結合が切断されうる事情から最適化をし直したところ、触媒量のヨウ素を加え、フッ化リチウムを加えた条件にて目的のヨウ化物が良好な収率で得られた。一般性はボリル化よりも広そうである。単純なベンゼン環だけでなく、ヘテロ芳香環、ステロイド骨格、保護チロシンなどにおいても適用可能であった。

議論すべき点

  • 今回の系においてなぜS-O結合が切断されないのかについては、論文中には詳細な説明がない。メカニズム解析は進行中とのことで、続報待ちか。

次に読むべき論文は?

  • 本研究の起点となった光照射型Finkelstein反応の論文[1]。このような反応が進行してしまうため、Cl・Br置換基質は許容されない可能性が高い。

参考文献

  1. Li, L.; Liu, W.; Zeng, H.; Mu, X.; Cosa, G.; Mi, Z.; Li, C.-J. J. Am. Chem. Soc. 2015, 137, 8328. DOI: 10.1021/jacs.5b03220
Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 世界の技術進歩を支える四国化成の「独創力」
  2. 未解明のテルペン類の生合成経路を理論的に明らかに
  3. おっさんマウスが小学生マウスを襲う?待ったの決め手はフェロモンに…
  4. 中国へ行ってきました 西安・上海・北京編①
  5. 水から電子を取り出す実力派触媒の登場!
  6. シグマトロピー転位によるキラルα-アリールカルボニルの合成法
  7. 相田卓三教授の最終講義をYouTube Live配信!
  8. 人工タンパク質ナノブロックにより自己組織化ナノ構造を創る

注目情報

ピックアップ記事

  1. ボニー・L.・バスラー Bonnie L. Bassler bassler
  2. NMR Chemical Shifts ー溶媒のNMR論文より
  3. 2010年日本化学会各賞発表-進歩賞-
  4. 研究留学術―研究者のためのアメリカ留学ガイド
  5. Nsアミン誘導体
  6. 薬価4月引き下げ 製薬各社は「アジア」「非医薬」に活路
  7. ワッカー酸化 Wacker oxidation
  8. 歪み促進型アジド-アルキン付加環化 SPAAC Reaction
  9. アノマー効果を説明できますか?
  10. ネニチェスク インドール合成 Nenitzescu Indole Synthesis

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年9月
 123
45678910
11121314151617
18192021222324
252627282930  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP