[スポンサーリンク]

化学者のつぶやき

【いまさら聞けない?】アジドの取扱いを学んでおこう!

[スポンサーリンク]

今年のノーベル化学賞とも深く関連する、アジド化合物。受賞対象となったクリックケミストリーに加えて、アミンの簡便な導入にも不可欠な存在として、世界中で使用頻度が増えています。

この高い有用性を反映して、新たなアジド基導入反応の開発研究も活発化を見せており、最近では遷移金属触媒を活用した光反応・電解反応なども数多く報告されています。

この潮流にあって必然と言うべきか「この新しい反応条件って、本当に実施しても安全なの?知見少ないけど大丈夫なの??」とする懸念が各所で生じてくることは、想像に難くありません。加えてアジドが活きる分野=ケミカルバイオロジーや創薬分野で化合物を扱う人は、有機合成のエキスパートではないケースも少なくありません。経験の浅い学生さんが実施するケースであれば、なおさら考えどころです。

このような中で注意喚起が必要だと考えたのか、Journal of Organic Chemistry誌からアジドの危険性に関するEditorialが公開されていました。中身は基本的ながら良くまとまっており、ラボ内安全教育にも活用できる良い資料だと思いました。今回、要約して紹介しておきます。

“How Dangerous Is Too Dangerous? A Perspective on Azide Chemistry”
Treitler, D. S.*; Leung, S.  J. Org. Chem. 2022, 87, 11293–11295. doi:10.1021/acs.joc.2c01402

アジドの取扱注意・三原則

もっともポピュラーかつ安価なアジド源といえば、アジ化ナトリウム(NaN3ですが、取り扱いにおいて気をつけるべきは、大きく下記の3点です。以下、順番に見ていきましょう。

  1. 酸への暴露を避ける
  2. 遷移金属への暴露を避ける
  3. ハロゲン溶媒の使用を避ける
1.酸への暴露を避ける

アジ化ナトリウムと酸を混合すると、アジ化水素(hydrazoic acid, HN3が生成します。HN3急性毒性(マウスLD50=22 mg/kg)に加えて、TNTよりも強い爆発性を持つ、極めて危険な化合物です。希釈することで幾分マシにはなりますが、危険性に変わりはありません。10%以上のHN3を含む窒素ガスや、20wt%以上(正確な値は決定されていない)のHN3水溶液でも、爆発性を有するとされています。

またHN3特有の話として、沸点が低い(約36℃)ために、希薄溶液からでも容易に蒸発・再凝縮されて濃縮溶液を生じてしまうことがあります(下図)。爆発に必要なものはわずかな摩擦や衝撃だけでよく、酸素・火元なしでも爆発は起こります。

HN3 の 2.0wt%水溶液は、25 ℃でもフラスコ壁面で蒸発→凝縮し、60wt%水溶液が生じうる。(本イメージ図は冒頭論文より引用)

HN3の希薄溶液を生成・保存する場合には、低沸点溶媒(エーテルやペンタンなど)を加えて蒸気や凝縮物を希釈するのがベストプラクティス(もちろん適切な計算のもと、安全濃度に収めるべきです)であり、 またHN3を生成しうる反応系では、凝縮を防ぐために連続窒素パージを行い、装置全体を37℃以上に維持しておくべきとされています。

2.遷移金属への暴露を避ける

アジ化銅(I)/銅(II)、あるいはそれに類する混合物からの爆発事故は、10件以上報告されており、少なくとも16人の死亡が確認されています。特にアジ化銅(II)は衝撃に弱く、結晶性固体に軽い衝撃をあたえるだけで、水中でも激しい爆発を起こすことが報告されています。無機アジドやHN3を含む反応に遷移金属を添加することは、そもそもが極めて危険な行為であると認識されるべきでしょう。汎用ベストプラクティスは存在しません。Al, Ca, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Mo, Pd, Ag, Cd, Sn, Sb, Te, Ba, Pt, Au, Hg, Tl, Pb, Biなどから、爆発性のアジ化塩の生成が報告されています。実験室レベルでは金属製のスパチュラを使わず、プラ製・テフロン製を使って秤量することを徹底すべきです。遷移金属アジ化塩の爆発性を調べた動画を貼っておきますので、ご参考に。

無機アジドを調製または使用する工業プロセスでは、金属が厳密に排除されるように、細心の注意が払われます。たとえば、反応器の金属部品、金属の継手、金属の熱電対、金属のスコップやスパチュラ、さらには床の排水溝もアジドが銅パイプに入り込まないように、綿密に保護されています。

3.ハロゲン溶媒の使用を避ける

特に問題となるのはジクロロメタンの使用です。無機アジドとジクロロメタンの組み合わせは、強い爆発性を誇るジアジドメタンの生成につながる可能性があり、多くの事故事例が報告されています。

脈々と語り継がれる、プロセス化学現場からの有名事故を一つ紹介しておきましょう。23のアジドSN2置換反応において、後処理の際に爆発が起こりました。溶媒としてDMFを用いているので一見問題無さそうに見えるのですが、前工程でDCM=ジクロロメタンを使用しています。12の反応(1 kgスケール)後に溶媒を留去したつもりが、完全には除けておらず、次工程で残存ジクロロメタンががNaN3と反応してジアジドメタンが生じてしまい、濃縮時に大爆発を起こしてしまったという顛末です。

反応溶媒では気をつけていても、分液抽出の溶媒にジクロロメタンを使用してしまううっかりミスも、しばしばやりがちです。アジド反応には、どこに危険が潜んでいるか分かりませんので、慎重な実施が必要です。

今回の文献では、無機アジドについての注意喚起が主ではありましたが、有機アジドも同様に危険なものが多く存在します。その爆発性については、こちらのケムステ過去記事が大変参考になると思います。

おわりに

Editorialの最後では、「著者・査読者とも、原稿の作成・評価の際には、安全性に関する重大な懸念に留意されることをお勧めします。過去の悲劇を繰り返さないよう、極度の危険に対する認識を広めることに全力を尽くさなければなりません」と結ばれています。しかし危険試薬であっても適切な取扱いができる限り、便利に用いることはできるのです。正しい知識をもって、日々の実験をご安全に行いましょう。

 

ことの顛末について補足

本稿が公開された背景には、同じくJOC誌に掲載されたGazvodaらによる報告があるようです。

当該論文(J. Org. Chem. 2022, 87, 4018)より引用

条件を眺めて見ると、たしかにアジ化銅(II)+HN3が出そうな条件なのでこれは・・・と思えます。しかし論文Conclusionでは、下記の主張がなされていました。

It is noteworthy that hydrazoic acid was recently used for the large-scale synthesis of an early aryltetrazole intermediate in the synthesis of a drug candidate, giving the developed method the potential for scaling-up.
(最近、医薬品候補化合物の合成において、アリールテトラゾール初期中間体の大規模合成にアジ化水素が使用されたことは注目に値する。このように、開発した方法はスケールアップの可能性を持っている。 )

この主張を受けてか、論文公表後に、編集部に注意喚起を求めるクレームが舞い込んだようです。その後、「HN3が生成しうる系で、濃度や金属源のケアなどを含めた最大限の安全配慮なしに、スケールアップできるとする主張は適切では無かった」とする趣旨のコメントが、Addition & Correctionの形で著者から発表されるに至っています。

新反応の開発に携わっている皆さんも、反応の魅力をアピールしたい欲が勝ってしまった結果、不用意なことを紙面に書いてしまうようなことがないよう、普段から肝に銘じておきましょう。

関連書籍

「続続 実験を安全に行うために –失敗事例集–」ケムステのレビューはこちら

「Hazardous Laboratory Chemicals Disposal Guide」 ケムステのレビューはこちら

 

ケムステ関連記事

関連リンク

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. スケールアップのためのインフォマティクス活用 -ラボスケールから…
  2. 単一分子を検出可能な5色の高光度化学発光タンパク質の開発
  3. エッセイ「産業ポリマーと藝術ポリマーのあいだ」について
  4. アルコールをアルキル化剤に!ヘテロ芳香環のC-Hアルキル化
  5. 一重項励起子開裂を利用した世界初の有機EL素子
  6. 文具に凝るといふことを化学者もしてみむとてするなり⑩:メクボール…
  7. 細胞を模倣したコンピューター制御可能なリアクター
  8. マテリアルズ・インフォマティクスの手法:条件最適化に用いられるベ…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ノーベル街道起点
  2. ホウ素ーホウ素三重結合を評価する
  3. 三井化学、「環状オレフィンコポリマー(商標:アペル)」の生産能力増強を決定
  4. アルキンから環状ポリマーをつくる
  5. 論説フォーラム「グローバル社会をリードする化学者になろう!!」
  6. 【書評】現場で役に立つ!臨床医薬品化学
  7. 第91回―「短寿命化学種の分光学」Daniel Neumark教授
  8. マスクをいくつか試してみた
  9. 諸熊 奎治 Keiji Morokuma
  10. 有機合成のための触媒反応103

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年10月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

最新記事

一致団結ケトンでアレン合成!1,3-エンインのヒドロアルキル化

ケトンと1,3-エンインのヒドロアルキル化反応が開発された。独自の配位子とパラジウム/ホウ素/アミン…

ベテラン研究者 vs マテリアルズ・インフォマティクス!?~ 研究者としてMIとの正しい向き合い方

開催日 2024/04/24 : 申込みはこちら■開催概要近年、少子高齢化、働き手の不足…

第11回 慶應有機化学若手シンポジウム

シンポジウム概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大…

薬学部ってどんなところ?

自己紹介Chemstationの新入りスタッフのねこたまと申します。現在は学部の4年生(薬学部)…

光と水で還元的環化反応をリノベーション

第609回のスポットライトリサーチは、北海道大学 大学院薬学研究院(精密合成化学研究室)の中村顕斗 …

ブーゲ-ランベルト-ベールの法則(Bouguer-Lambert-Beer’s law)

概要分子が溶けた溶液に光を通したとき,そこから出てくる光の強さは,入る前の強さと比べて小さくなる…

活性酸素種はどれでしょう? 〜三重項酸素と一重項酸素、そのほか〜

第109回薬剤師国家試験 (2024年実施) にて、以下のような問題が出題されま…

産総研がすごい!〜修士卒研究職の新育成制度を開始〜

2023年より全研究領域で修士卒研究職の採用を開始した産業技術総合研究所(以下 産総研)ですが、20…

有機合成化学協会誌2024年4月号:ミロガバリン・クロロププケアナニン・メロテルペノイド・サリチル酸誘導体・光励起ホウ素アート錯体

有機合成化学協会が発行する有機合成化学協会誌、2024年4月号がオンライン公開されています。…

日本薬学会第144年会 (横浜) に参加してきました

3月28日から31日にかけて開催された,日本薬学会第144年会 (横浜) に参加してきました.筆者自…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP