[スポンサーリンク]

化学者のつぶやき

歯車クラッチを光と熱で制御する分子マシン

[スポンサーリンク]

配位子「アザホスファトリプチセン」を2つもつ白金錯体を合成した。この白金錯体の光と熱による「シス−トランス異性化反応」を利用し、歯車クラッチ能をもつ分子マシンの開発に成功した。

歯車分子と分子マシン

2016年のノーベル化学賞は「分子マシンの設計と合成」へ与えられた。機能をもつ最小単位である分子をつかってマクロ世界を再現しようという試みは古くからなされている。今後この分野の研究はより一層盛んとなっていくと思われる。

分子マシンを構成する最も基本的な部品として回転子が噛み合って働く歯車がある。様々な形の回転子が既に報告されており、その代表例としてトリプチセンが知られている(Scheme 1A)。トリプチセンは剛直で高い対称性をもつプロペラ状の化合物であり、2つ以上のトリプチセン誘導体が適切な位置で噛み合えば、その回転動力を次の回転子に伝達することができる (Scheme 1B)[1]。しかしながら、歯車クラッチ(歯車の噛み合いのオン・オフ機能)をもつ例はトリプチセン誘導体を用いたものに関わらず少ない。

トリプチセン誘導体を使ったクラッチ機能を有する分子の例として、ケイ素を中心にもつビストリプチセン化合物1が報告されている (Scheme 1C)[2]。ブロモトリプチセンと四フッ化ケイ素を反応させ得られた1は、dl-1体とmeso-1体の混合物となる。これにフッ素アニオンを加えると中心のケイ素原子が5配位状態となり、アピカル位に位置するトリプチセン部位は距離が離れ、相互作用しない。一方で、水を加えると元に戻る。つまり、フッ素アニオンと水が「クラッチ」の役割をしている。

Scheme 1. (A) トリプチセン(B) 歯車機能をもつトリプチセン分子の例(C)クラッチ能をもつトリプチセン化合物の例

今回、東京大学の塩谷らはこのような歯車のクラッチ能を有する分子の創製を目指し、新しい金属錯体を合成した。クラッチ能の発現は、古くから知られる「金属イオン上でのシスートランス異性化反応」を利用した。

“Metal-centred azaphosphatriptycene gear with a photo- and thermally driven mechanical switching function based on coordination isomerism”

Ube, H.; Yasuda, Y.; Sato, H.; Shionoya, M. Nat Commun 2017, 8, 14296. DOI: 10.1038/ncomms14296

論文著者の紹介

研究者:塩谷 光彦

研究者の経歴:
1982 東京大学薬学部薬学科 卒業
1995 岡崎国立共同研究機構分子科学研究所 教授
1999 東京大学大学院理学系研究科化学専攻 教授
詳しくはこちらを参照

研究内容:金属イオン配列のプログラミング・分子機械の開発など

論文の概要

歯車機能もたせるトリプチセン配位子として、アザホスファトリプチセン2を選定した[3]。これにK2PtCl4を作用させるとcis-PtCl222(シス体)と少量のtrans-PtCl222(トランス体)の白金錯体混合物が得られた(Scheme 2)。シス体は歯車が噛み合った状態、一方のトランス体は歯車が噛み合っていない構造となる。これを自在に制御することができれば、歯車クラッチ能を有する分子となる。

彼らは金属錯体の「シスートランス異性化反応」を用いて、この相互変化を試みた。即ち、光を照射することで、シス体はトランス体へ、熱により、トランス体はシス体へ異性化すると考えられる。実際に、シス体は光照射(360nm, 30分)により、トランス体へ異性化した(シス体/トランス体= 15:85)。その後、室温で放置すると徐々に、シス体へ異性化し10時間後にはほぼシス体へ異性化した(シス体/トランス体= 98:2)。

各々の構造をX線結晶構造解析により決定し、1H NMRで経時変化を追うことで、解析している。異性化反応は光、熱を交互に繰り返すことにより、同様に起こることを確認している。詳細な解析は論文を参照されたい。

歯車クラッチ機能を光と熱で制御できる金属錯体は、今回がはじめての成果となる。トリプチセン誘導体やその合成および白金錯体の物性は根本的には知られているが、それら”部品”を明確な目的をもって適切に”つなげ”、クラッチ能を有する新しい分子マシンの創製に成功した。

Scheme 2. 光と熱によるクラッチ機能を有する白金金属錯体の合成とコンセプト

P.S. Supplementary Informationのアザホスファトリプチセンの合成の構造式が豪快に間違えていたのだけは少し残念でした。

 参考文献

  1. (a) Iwamura, H.; Mislow, K. Chem. Res. 1988, 21, 175. DOI: 10.1021/ar00148a007 (b) Balzani, V.; Credi, V.; Venturi, M. In Molecular DeVices and Machines; Wiley-VCH: Weinheim, 2003; Chapter 11.
  2. Setaka, W.; Nirengi, T.; Kabuto, C.; Kira, M. Am. Chem. Soc. 2008, 130, 15762. DOI: 10.1021/ja805777p
  3. Hellwinkel, D.; Schenk, W. Chem., Int. Ed. 1969, 8, 987. DOI: 10.1002/anie.196909871
山口 研究室

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. (+)-ゴニオトキシンの全合成
  2. 不安定炭化水素化合物[5]ラジアレンの合成と性質
  3. 有機反応を俯瞰する ー縮合反応
  4. ホウ素と窒素で何を運ぶ?
  5. ご長寿化学者の記録を調べてみた
  6. 原子一個の電気陰性度を測った! ―化学結合の本質に迫る―
  7. アメリカ大学院留学:実験TAと成績評価の裏側
  8. OMCOS19に参加しよう!

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ペプチド鎖が精密に編み込まれた球殻状ナノカプセル〜24交点の絡まりトポロジーをもつ[6]カテナン分子の合成〜
  2. 銅触媒と可視光が促進させる不斉四置換炭素構築型C-Nカップリング反応
  3. Nature Chemistry:Research Highlight
  4. 化学の力で複雑なタンパク質メチル化反応を制御する
  5. 新しい芳香族トリフルオロメチル化試薬
  6. タンチョウ:殺虫剤フェンチオンで中毒死増加
  7. 学問と創造―ノーベル賞化学者・野依良治博士
  8. 森田浩介 Kosuke Morita
  9. ジャクリン・バートン Jacqueline K. Barton
  10. Reaxys Ph.D Prize2019ファイナリスト発表!

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

化学者のためのエレクトロニクス講座~有機半導体編

このシリーズでは、化学者のためのエレクトロニクス講座では半導体やその配線技術、フォトレジストやOLE…

第120回―「医薬につながる複雑な天然物を全合成する」Richmond Sarpong教授

第120回の海外化学者インタビューは、リッチモンド・サーポン教授です。カリフォルニア大学バークレー校…

DNAナノ構造体が誘起・制御する液-液相分離

第274回のスポットライトリサーチは、佐藤佑介 博士にお願いしました。液-液相分離は近年の一…

常圧核還元(水添)触媒 Rh-Pt/(DMPSi-Al2O3)

一般的な特長Rh-Pt/(DMPSi-Al2O3)は、優れた活性を示す水素還元(水添)触媒です。…

世界最高の耐久性を示すプロパン脱水素触媒

第273回のスポットライトリサーチは、北海道大学触媒科学研究所・中谷勇希さんにお願いしました。…

第119回―「腸内細菌叢の研究と化学プロテオミクス」Aaron Wright博士

第119回の海外化学者インタビューは、アーロン・ライト博士です。パシフィック・ノースウエスト国立研究…

化学者のためのエレクトロニクス講座~化合物半導体編

このシリーズでは、化学者のためのエレクトロニクス講座では半導体やその配線技術、フォトレジストやOLE…

次世代電池の開発と市場予測について調査結果を発表

この程、TPC マーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=川原喜治)は、 次…

Chem-Station Twitter

PAGE TOP