[スポンサーリンク]

化学者のつぶやき

歯車クラッチを光と熱で制御する分子マシン

配位子「アザホスファトリプチセン」を2つもつ白金錯体を合成した。この白金錯体の光と熱による「シス−トランス異性化反応」を利用し、歯車クラッチ能をもつ分子マシンの開発に成功した。

歯車分子と分子マシン

2016年のノーベル化学賞は「分子マシンの設計と合成」へ与えられた。機能をもつ最小単位である分子をつかってマクロ世界を再現しようという試みは古くからなされている。今後この分野の研究はより一層盛んとなっていくと思われる。

分子マシンを構成する最も基本的な部品として回転子が噛み合って働く歯車がある。様々な形の回転子が既に報告されており、その代表例としてトリプチセンが知られている(Scheme 1A)。トリプチセンは剛直で高い対称性をもつプロペラ状の化合物であり、2つ以上のトリプチセン誘導体が適切な位置で噛み合えば、その回転動力を次の回転子に伝達することができる (Scheme 1B)[1]。しかしながら、歯車クラッチ(歯車の噛み合いのオン・オフ機能)をもつ例はトリプチセン誘導体を用いたものに関わらず少ない。

トリプチセン誘導体を使ったクラッチ機能を有する分子の例として、ケイ素を中心にもつビストリプチセン化合物1が報告されている (Scheme 1C)[2]。ブロモトリプチセンと四フッ化ケイ素を反応させ得られた1は、dl-1体とmeso-1体の混合物となる。これにフッ素アニオンを加えると中心のケイ素原子が5配位状態となり、アピカル位に位置するトリプチセン部位は距離が離れ、相互作用しない。一方で、水を加えると元に戻る。つまり、フッ素アニオンと水が「クラッチ」の役割をしている。

Scheme 1. (A) トリプチセン(B) 歯車機能をもつトリプチセン分子の例(C)クラッチ能をもつトリプチセン化合物の例

今回、東京大学の塩谷らはこのような歯車のクラッチ能を有する分子の創製を目指し、新しい金属錯体を合成した。クラッチ能の発現は、古くから知られる「金属イオン上でのシスートランス異性化反応」を利用した。

“Metal-centred azaphosphatriptycene gear with a photo- and thermally driven mechanical switching function based on coordination isomerism”

Ube, H.; Yasuda, Y.; Sato, H.; Shionoya, M. Nat Commun 2017, 8, 14296. DOI: 10.1038/ncomms14296

論文著者の紹介

研究者:塩谷 光彦

研究者の経歴:
1982 東京大学薬学部薬学科 卒業
1995 岡崎国立共同研究機構分子科学研究所 教授
1999 東京大学大学院理学系研究科化学専攻 教授
詳しくはこちらを参照

研究内容:金属イオン配列のプログラミング・分子機械の開発など

論文の概要

歯車機能もたせるトリプチセン配位子として、アザホスファトリプチセン2を選定した[3]。これにK2PtCl4を作用させるとcis-PtCl222(シス体)と少量のtrans-PtCl222(トランス体)の白金錯体混合物が得られた(Scheme 2)。シス体は歯車が噛み合った状態、一方のトランス体は歯車が噛み合っていない構造となる。これを自在に制御することができれば、歯車クラッチ能を有する分子となる。

彼らは金属錯体の「シスートランス異性化反応」を用いて、この相互変化を試みた。即ち、光を照射することで、シス体はトランス体へ、熱により、トランス体はシス体へ異性化すると考えられる。実際に、シス体は光照射(360nm, 30分)により、トランス体へ異性化した(シス体/トランス体= 15:85)。その後、室温で放置すると徐々に、シス体へ異性化し10時間後にはほぼシス体へ異性化した(シス体/トランス体= 98:2)。

各々の構造をX線結晶構造解析により決定し、1H NMRで経時変化を追うことで、解析している。異性化反応は光、熱を交互に繰り返すことにより、同様に起こることを確認している。詳細な解析は論文を参照されたい。

歯車クラッチ機能を光と熱で制御できる金属錯体は、今回がはじめての成果となる。トリプチセン誘導体やその合成および白金錯体の物性は根本的には知られているが、それら”部品”を明確な目的をもって適切に”つなげ”、クラッチ能を有する新しい分子マシンの創製に成功した。

Scheme 2. 光と熱によるクラッチ機能を有する白金金属錯体の合成とコンセプト

P.S. Supplementary Informationのアザホスファトリプチセンの合成の構造式が豪快に間違えていたのだけは少し残念でした。

 参考文献

  1. (a) Iwamura, H.; Mislow, K. Chem. Res. 1988, 21, 175. DOI: 10.1021/ar00148a007 (b) Balzani, V.; Credi, V.; Venturi, M. In Molecular DeVices and Machines; Wiley-VCH: Weinheim, 2003; Chapter 11.
  2. Setaka, W.; Nirengi, T.; Kabuto, C.; Kira, M. Am. Chem. Soc. 2008, 130, 15762. DOI: 10.1021/ja805777p
  3. Hellwinkel, D.; Schenk, W. Chem., Int. Ed. 1969, 8, 987. DOI: 10.1002/anie.196909871
The following two tabs change content below.
山口 研究室
早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 134回日本薬学会年会ケムステ付設展示会キャンペーン!
  2. 研究者向けプロフィールサービス徹底比較!
  3. アイルランドに行ってきた②
  4. 単一分子の電界発光の機構を解明
  5. 日米の研究観/技術観の違い
  6. 有機合成化学協会誌7月号:ランドリン全合成・分子間interru…
  7. 近況報告PartIV
  8. 英語発表に”慣れる”工夫を―『ハイブリッ…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 文具に凝るといふことを化学者もしてみむとてするなり④:「ブギーボード」の巻
  2. デュアルディスプレイDNAコード化化合物ライブラリーの改良法
  3. アルダー エン反応 Alder Ene Reaction
  4. ワールドクラスの日本人化学者が語る研究物語―『化学者たちの感動の瞬間』
  5. 化学系面白サイトでちょっと一息つきましょう
  6. ノリッシュ・ヤン反応 Norrish-Yang Reaction
  7. 堀場雅夫 Masao Horiba  
  8. 鉄錯体による触媒的窒素固定のおはなし-2
  9. インドール一覧
  10. 防カビ効果、長持ちします 住友化学が新プラスチック

関連商品

注目情報

注目情報

最新記事

ケミカルバイオロジーとバイオケミストリー

突然ですが、質問です。有機化学と無機化学。違いは説明できますか?「生体物質をあつかうものが有…

改正特許法が国会で成立

特許を侵害したと疑われる企業に専門家が立ち入り検査する制度を新設する改正特許法が10日午前の参院本会…

創薬人育成サマースクール2019(関東地区) ~くすりを創る研究の醍醐味を知る!~

動物や臓器に代わる画期的な実験ツールとして注目される生体機能チップ、原薬(API)合成に不可欠なプロ…

最小のシクロデキストリンを組み上げる!

第196回目のスポットライトリサーチは、関西学院大学理工学部化学科(山田研究室)・若森晋之介 助教に…

周期表の形はこれでいいのか? –上下逆転した周期表が提案される–

重い元素を上に置き、軽い元素を下に置く周期表が提案されました。この記事では、その上下逆転周期表の利点…

有機合成化学協会誌2019年5月号:特集号 ラジカル種の利用最前線

有機合成化学協会が発行する有機合成化学協会誌、2019年5月号がオンライン公開されました。令…

Chem-Station Twitter

PAGE TOP