[スポンサーリンク]

化学者のつぶやき

信じられない!驚愕の天然物たち

[スポンサーリンク]

天然っていうとなんか体に良さそうとかいうイメージありませんか?天然成分配合とか、天然酵母で作ったパンとか。
有機っていうとなんか環境に優しそうなイメージありませんか?有機栽培とか。
じゃあ天然有機化合物は環境に優しくて体にいい感じ?
それほどでも無いですか。そうですか。失礼いたしました。
天然物化学に携わる研究者なら、研究のシーズを探すためにもユニークな化合物が発見されないかなあと日々気にしていることと思います。でもたまにちょっと信じがたいような化合物の発見に関する論文に出くわす事があります。今回のポストではいろんな意味で信じられない化合物を紹介したいと思います。

いわゆる天然物化学の世界では、まず微生物や植物などから化合物を分離、同定することから始まります。その後、生物活性や化学合成、生合成や作用機作の研究などへ発展していくことがほとんどです。全く新しい構造の化合物や、もの凄い生物活性をもつ化合物が発見されるたびにこの分野は発展してきました。よって天然から化合物を分離、同定する研究は最も重要なものと位置付けることができます。そんな研究で時に思いもよらない“あり得ない”報告がなされるときがあります。
tramadol.png
まずはこちらのtramadolをご紹介しましょう。本化合物はカメルーンで薬用に用いられている植物から単離されました。抗炎症作用など様々な活性があることが明らかにされました[1]。
構造としては珍しい骨格ではありますが、植物なら作るかもしれないなあとも思えるアルカロイドです。ただ不斉炭素があるにもかかわらず単離されたのはラセミ体でした。まあ天然物は必ずしも純粋な鏡像異性体ではないことは知られていますし、ラセミ体もたまにあります。
じゃあ何が信じられないのかと言えば、この化合物はなんと既に人工的に合成がなされ、ドイツのGrnenthal GmbHより1970年代から市販されていた化合物だということです。主に鎮痛剤として用いられていました。

医薬品の開発などにおいては、一般に天然から得られた生物活性がある化合物をヒントにして(リード化合物)その骨格を改変したりして、より強い活性や高い安全性、経済性など様々な検討がなされます。製品になる頃にはリード化合物とは似ても似つかない形になっていることも珍しくありません。Tramadolの開発の経緯は定かではありませんが、カメルーンの植物から抽出することから始めたということは無いと思います。
ラセミ体だし何処かで買った化合物が何かの間違いで混入したのでは?という疑問が当然わきます。著者らはその辺を大変慎重に調べており、粗抽出物中に確かにtramadolが含まれていることや、窒素の同位体比が製品と天然物では少し異なっていることなどを示しています。

さてお次はこちらの化合物です。

fluoro.png
どう見ても人工物です。ありがとうございました。と言いたいところですが放線菌の一種から単離されました[2]。
何が信じられないかって、まずフッ素ですよ。フッ素が含まれる有機化合物はごまんとありますが、天然から得られた例は極めて少ないです。そもそも環境中に使用できるフッ素が少ないですし、生体はフッ素をほとんど使うことができません。有機化学美術館さんに天然から得られたフッ素化合物の例が紹介されていますが、数えるほどしかないことがお分かり頂けることでしょう。
しかもこの化合物、ベンゼンにフッ素が結合してるんです。そもそもフルオロベンゼン誘導体の合成法って限られてますよね。それを生物がやってしまうなんて驚きです。

ginkgolide.pngt-ブチル基を持つ天然物として初めて単離されたのはギンコライド

さらに驚きなのはt-ブチル基があるというところです。t-ブチル基も生合成的に少し困難なので天然からはあまり見つかりません。それが二つもベンゼン環にあって、しかもその大きな二つのt-ブチル基に挟まれたところにフッ素があるという人工合成もどうやろうか迷ってしまうような構造です。
構造決定にはX-線結晶構造解析を使っていますので間違いはないのでしょうが、放線菌がどうやってこれを作るのか非常に興味深いです。この化合物の生合成酵素が取れたら、有機合成上非常に有用なんじゃないでしょうか。なんかのコンタミじゃないことを祈ります。

最後は天然物化学者がやっちまった例を[3]。

neoveratrenone.png
有機化学者なら一見して”信じられない“と言いたくなる構造です。そうですBredt則に反しています。ビシクロ骨格の橋頭位に二重結合を置くのはいただけませんね。

taxol.pngただしタキソールのように一方でも環が大きくなればOKです
やはりこの構造はおかしいのではないかと考えた研究者がおり、既知化合物のデータと比較するなどして、天然物の真の構造は右のような構造であることを明らかにしています[4]。論文のタイトルがanti-Bredt Red Flag!となっているのも面白いですね。
Bredt則に反していると言えばもっと凄いのがありました[5]。
piperkadsin_C.png
もう本当にふざけるなですね。これを通した査読者は誰なのか明らかにして欲しいレベルです。
海外のサイトでも当時色々議論があったようです。
こちらは間もなく著者ら自身によって訂正が出され、右のような構造が提案されています[6]。そうですね。これなら素直な化合物ですねって。おいおいこれいくらなんでもカルボニルがエノール化して芳香環になるんじゃないの?こんなの安定なのか?とつっこみを入れたくなります。その後の進展はないようですのであいにく真偽のほどはわかりません。
天然物の構造決定に関する論文の査読をする際は、このようなあり得ない構造の報告には十分慎重になるべきではないでしょうか。最初に紹介した化合物のようにその発見自体をあり得ないものが見つかったという主張をしている論文であればいいのですが、常識ではあり得ない物質を提案されたらまずはデータの解釈に誤りがないか確認すべきでしょう。

天然物の構造決定には現在でもNMRが主流です。しかしNMRスペクトルの解釈には熟練を要します。少しでも解釈を誤るとこのようなあり得ない構造を導いてしまいます。たまにではありますが最後の例のように分子模型を組んでみれば明らかに無理がある構造が報告されることがあります。アナログな方法ですが、模型の力を舐めてはいけませんね。あとどうやって生合成されるかを考えに入れることも重要です。例えばテルペンなんだったらイソプレン則に沿った骨格をまず考えてみるとかした方がNMRの解釈がすんなりいくかもしれません。

天然物の構造決定に誤りがあった例がつらつらと並べられている報告なんてのもありました[7]。かなりの割合で天然物の構造決定に誤りがある例が発見されています。それだけ今だに難しい分野だということでしょう。魅力的な天然物の発見こそこの分野の発展、応用の鍵ですのでより優れた構造決定の方法論が登場することを願ってやみません。結晶スポンジ法はその候補になりうると個人的に思っています。

関連文献

[1] Occurrence of the Synthetic Analgesic Tramadol in an African Medicinal Plant. De?Waard,?M. et al. Angew. Chem. Int. Ed. 52, 11780 (2013). doi: 10.1002/anie.201305697

[2] Natural Occurrence of Organofluorine and Other Constituents from Streptomyces sp. TC1. Marimuthu, P. et al. J. Nat. Prod.?77, 2, (2014). doi: 10.1021/np400360h

[3] Two New Chemical Constituents of Veratrum dahuricum (Turcz.) Loes. f. Cong, Y. et al. Helv. Chim. Acta 96. 345 (2013). doi: 10.1002/hlca.201200381

[4] The Anti-Bredt Red Flag! Reassignment of Neoveratrenone.? Andrei I. Savchenko, A. I.; Williams, C. M. Eur. J. Org. Chem. 7263 (2013). doi: 10.1002/ejoc.201301308

[5] Neolignans from Piper kadsura and their anti-neuroinflammatory activity. Lee, K. R. et al. Bioorg. Med. Chem. Lett. 20, 409 (2010). doi: 10.1016/j.bmcl.2009.10.016

[6] Corrigendum to “Neolignans from Piper kadsura and their anti-neuroinflammatory activity” [Bioorg. Med. Chem. Lett. 20 (2010) 409]. Lee, K. R. et al. Bioorg. Med. Chem. Lett. 20, 3186 (2010). doi: 10.1016/j.bmcl.2010.04.003

[7] Chasing Molecules That Were Never There: Misassigned Natural Products and the Role of Chemical Synthesis in Modern Structure Elucidation. Nicolaou, K. C.; Snyder, S. A. Angew. Chem. Int. Ed. 44, 1012 (2005). doi: 10.1002/anie.200460864

 

関連書籍

[amazonjs asin=”4339067172″ locale=”JP” title=”天然物化学 バイオテクノロジー教科書シリーズ”][amazonjs asin=”4524402616″ locale=”JP” title=”薬学生のための天然物化学”][amazonjs asin=”475980787X” locale=”JP” title=”これならわかるNMR―そのコンセプトと使い方”][amazonjs asin=”480790633X” locale=”JP” title=”有機化合物のスペクトルによる同定法―MS,IR,NMRの併用”]
Avatar photo

ペリプラノン

投稿者の記事一覧

有機合成化学が専門。主に天然物化学、ケミカルバイオロジーについて書いていきたいと思います。

関連記事

  1. NCL用ペプチド合成を簡便化する「MEGAリンカー法」
  2. 日本薬学会  第143年会 付設展示会ケムステキャンペーン Pa…
  3. マテリアルズ・インフォマティクスのためのSaaS miHubの活…
  4. カーボン系固体酸触媒
  5. Org. Proc. Res. Devのススメ
  6. 有機反応を俯瞰する ーエノラートの発生と反応
  7. 表裏二面性をもつ「ヤヌス型分子」の合成
  8. プロジェクトディレクトリについて

注目情報

ピックアップ記事

  1. ケムステ版・ノーベル化学賞候補者リスト【2020年版】
  2. tert-ブチルメルカプタン:tert-Butyl Mercaptan
  3. カプロラクタム (caprolactam)
  4. 金属イオン捕捉とタンパク質フォールディング促進の二刀流でストレスに立ち向かえ!
  5. 究極のエネルギーキャリアきたる?!
  6. 炭素置換Alアニオンの合成と性質の解明
  7. クノール キノリン合成 Knorr Quinoline Synthesis
  8. SDGsと化学: 元素循環からのアプローチ
  9. 有機合成のナビゲーター
  10. 2008年ウルフ賞受賞者発表

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2014年2月
 12
3456789
10111213141516
17181920212223
2425262728  

注目情報

最新記事

有馬温泉で鉄イオン水溶液について学んできた【化学者が行く温泉巡りの旅】

有馬温泉の金泉は、塩化物濃度と鉄濃度が日本の温泉の中で最も高い温泉で、黄褐色を呈する温泉です。この記…

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

第58回Vシンポ「天然物フィロソフィ2」を開催します!

第58回ケムステVシンポジウムの開催告知をさせて頂きます!今回のVシンポは、コロナ蔓延の年202…

第76回「目指すは生涯現役!ロマンを追い求めて」櫛田 創 助教

第76回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第75回「デジタル技術は化学研究を革新できるのか?」熊田佳菜子 主任研究員

第75回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第74回「理想的な医薬品原薬の製造法を目指して」細谷 昌弘 サブグループ長

第74回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第57回ケムステVシンポ「祝ノーベル化学賞!金属有機構造体–MOF」を開催します!

第57回ケムステVシンポは、北川 進 先生らの2025年ノーベル化学賞受賞を記念して…

櫛田 創 Soh Kushida

櫛田 創(くしだそう)は日本の化学者である。筑波大学 数理物質系 物質工学域・助教。専門は物理化学、…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP