[スポンサーリンク]

化学者のつぶやき

ここまでできる!?「DNA折り紙」の最先端 ① ~入門編~

 

「DNA折り紙」という技術をご存じですか? 一言で述べるなら、DNA鎖を折り曲げ、ナノスケールの構造体を作り上げる技術です。

2006年の報告以来、大きな夢を感じさせるアウトプットが続々と報告されているのですが、その一方でビジュアル的にとても面白いという希有な特徴も持ち合わせています。我が国の伝統芸能とは元来無関係なはずですが、美的側面はまさに「Origami」の名を冠するにふさわしいものです。

この未来的技術・「DNA折り紙」の進展について、総説[1]を参考に数回にわたって紹介していきたいと思います。

まずは「DNA折り紙とはなんぞや?」というお話から。

DNA分子は皆さんもご存じの通り、決まった相手とだけ二重らせんを組む性質があります。この現象を応用してナノ構造体を作ろうとする研究は、Nadrian C. Seemanという研究者によって開拓されました。

初期に作られたもっとも有名な一つが、Seemanの立方体と呼ばれる構造体です。下図に示す通り、選択的のり付け部位をもったDNAモチーフを設計し、それらを頂点として互いに組み合わせて立方体を組みあげます。

このように、彼は特定のDNAモチーフを設計しながら様々な構造体を作り上げ、「構造DNAナノテクノロジー」と呼ばれる分野の基礎を築きあげました。[2]

DNAOrigami_3

(画像:論文[2]より)

その後しばらくの年月を経た2006年、「DNA折り紙」技術の電撃的な報告がなされました[3]。カリフォルニア工科大学の若き研究者・Paul Rothemundによるものです。

DNA折り紙法の特徴は長い一本鎖DNA(~7000塩基)とstaple strand(短い相補的DNA鎖、多くは32塩基)を組み合わせる工夫にあります。これらを混ぜて加熱・冷却することで長鎖DNAを折りたたませ、望みの構造に落ち着かせます。根底を流れる考え方はSeemanの方法と共通ですが、大きなサイズの構造体が信頼性高く作れる(~100nmサイズ)ことに加え、特定の「住所」を持つstaple strandに好みの機能を付与できることも際だった特徴です。

DNAOrigami_2

(画像:論文[1]より)

Rothemundはこの技術のデモンストレーションとして、複雑な構造をもつ平面(2D)構造体を多数作り上げてみせました。中でも目を引く有名なものは、ナノサイズのスマイルマークや世界地図でしょう。こんなものがDNAを混ぜるだけで自動的に組み上がるのですから、驚くほかありません。もっと見たい方は、関連動画のTEDプレゼンをご覧ください。

 

DNAOrigami_1

(画像:論文[1]より)

まだ新しい技術なのですが、現在までの発展は実に目覚ましいものがあります。Rothemundの成し遂げた2D構造に加え、最近では立体(3D)構造も構築できるようになっています。さらにはスイッチ分子によって構造変化を起こすなど、機能を持つ構造体も登場しています。

ビジュアル要素だけでもこの上なく楽しい技術ですが、具体的にどんな使われ方をしていくと思いますか?まだまだ開拓余地の多い技術ですから、科学者の果てなき想像力と夢が応用の地平を拓くといえます。アイデア次第では、読者の皆さんでも優れたアウトプットが出せるかも!?

次回からは、そんな最先端研究を少しずつ紹介していきたいと思います。

 

関連動画

関連文献

[1] “DNA origami technology for biomaterials applications” Endo, M.; Yang, Y.; Sugiyama, H. Biomater. Sci. 20121, 347. DOI:10.1039/c2bm00154c
[2] “DNA in a material world” Seeman, N. C. Nature 2003421, 427. doi:10.1038/nature01406
[3] “Folding DNA to create nanoscale shapes and patterns” Rothemund, P. W. K. Nature 2006440, 297. doi:10.1038/nature04586

 

関連書籍

 

外部リンク

The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 韓国チームがiPS細胞の作製効率高める化合物を発見
  2. (+)-sieboldineの全合成
  3. 水分子が見えた! ー原子間力顕微鏡を用いた水分子ネットワークの観…
  4. トリチウム水から完全無害な水素ガスを作り出す?
  5. 位置選択的C-H酸化による1,3-ジオールの合成
  6. 【書籍】パラグラフ・ライティングを基礎から訓練!『論理が伝わる …
  7. GFPをも取り込む配位高分子
  8. 化学者の卵、就職活動に乗りだす

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 触媒のチカラで不可能を可能に?二連続不斉四級炭素構築法の開発
  2. ニセクロハツの強毒原因物質を解明 “謎の毒キノコ” 京薬大准教授ら
  3. 第3回ITbM国際シンポジウム(ISTbM-3)、第11回平田アワード、第1回岡崎アワード
  4. メルドラム酸:Meldrum’s Acid
  5. 小さなフッ素をどうつまむのか
  6. ちょっとキレイにサンプル撮影
  7. 2005年8月分の気になる化学関連ニュース投票結果
  8. フタロシアニン鉄(II) : Phthalocyanine Iron(II)
  9. シュライバー・アトキンス 無機化学 (上)・(下) 第 6 版
  10. コバルト触媒でアリル位C(sp3)–H結合を切断し二酸化炭素を組み込む

関連商品

注目情報

注目情報

最新記事

NMR解析ソフト。まとめてみた。①

合成に関連する研究分野の方々にとって、NMR測定とはもはやルーティーンワークでしょう。反応を仕掛けて…

エリック・アレクサニアン Eric J. Alexanian

エリック・J・アレクサニアン(Eric J. Alexanian、19xx年x月x日-)は、アメリカ…

光C-Hザンチル化を起点とするLate-Stage変換法

2016年、ノースカロライナ大学チャペルヒル校・Eric J. Alexanianらは、青色光照射下…

硤合 憲三 Kenso Soai

硤合 憲三 (そあい けんそう、1950年x月x日-)は、日本の有機化学者である。東京理科大学 名誉…

カルボン酸からハロゲン化合物を不斉合成する

第119回のスポットライトリサーチは、豊橋技術科学大学大学院 柴富研究室 博士後期課程1年の北原 一…

アンドリュー・ハミルトン Andrew D. Hamilton

アンドリュー・ディヴィッド・ハミルトン (Andrew David Hamilton、1952年11…

Chem-Station Twitter

PAGE TOP