[スポンサーリンク]

化学者のつぶやき

ここまでできる!?「DNA折り紙」の最先端 ① ~入門編~

[スポンサーリンク]

 

「DNA折り紙」という技術をご存じですか? 一言で述べるなら、DNA鎖を折り曲げ、ナノスケールの構造体を作り上げる技術です。

2006年の報告以来、大きな夢を感じさせるアウトプットが続々と報告されているのですが、その一方でビジュアル的にとても面白いという希有な特徴も持ち合わせています。我が国の伝統芸能とは元来無関係なはずですが、美的側面はまさに「Origami」の名を冠するにふさわしいものです。

この未来的技術・「DNA折り紙」の進展について、総説[1]を参考に数回にわたって紹介していきたいと思います。

まずは「DNA折り紙とはなんぞや?」というお話から。

DNA分子は皆さんもご存じの通り、決まった相手とだけ二重らせんを組む性質があります。この現象を応用してナノ構造体を作ろうとする研究は、Nadrian C. Seemanという研究者によって開拓されました。

初期に作られたもっとも有名な一つが、Seemanの立方体と呼ばれる構造体です。下図に示す通り、選択的のり付け部位をもったDNAモチーフを設計し、それらを頂点として互いに組み合わせて立方体を組みあげます。

このように、彼は特定のDNAモチーフを設計しながら様々な構造体を作り上げ、「構造DNAナノテクノロジー」と呼ばれる分野の基礎を築きあげました。[2]

DNAOrigami_3

(画像:論文[2]より)

その後しばらくの年月を経た2006年、「DNA折り紙」技術の電撃的な報告がなされました[3]。カリフォルニア工科大学の若き研究者・Paul Rothemundによるものです。

DNA折り紙法の特徴は長い一本鎖DNA(~7000塩基)とstaple strand(短い相補的DNA鎖、多くは32塩基)を組み合わせる工夫にあります。これらを混ぜて加熱・冷却することで長鎖DNAを折りたたませ、望みの構造に落ち着かせます。根底を流れる考え方はSeemanの方法と共通ですが、大きなサイズの構造体が信頼性高く作れる(~100nmサイズ)ことに加え、特定の「住所」を持つstaple strandに好みの機能を付与できることも際だった特徴です。

DNAOrigami_2

(画像:論文[1]より)

Rothemundはこの技術のデモンストレーションとして、複雑な構造をもつ平面(2D)構造体を多数作り上げてみせました。中でも目を引く有名なものは、ナノサイズのスマイルマークや世界地図でしょう。こんなものがDNAを混ぜるだけで自動的に組み上がるのですから、驚くほかありません。もっと見たい方は、関連動画のTEDプレゼンをご覧ください。

 

DNAOrigami_1

(画像:論文[1]より)

まだ新しい技術なのですが、現在までの発展は実に目覚ましいものがあります。Rothemundの成し遂げた2D構造に加え、最近では立体(3D)構造も構築できるようになっています。さらにはスイッチ分子によって構造変化を起こすなど、機能を持つ構造体も登場しています。

ビジュアル要素だけでもこの上なく楽しい技術ですが、具体的にどんな使われ方をしていくと思いますか?まだまだ開拓余地の多い技術ですから、科学者の果てなき想像力と夢が応用の地平を拓くといえます。アイデア次第では、読者の皆さんでも優れたアウトプットが出せるかも!?

次回からは、そんな最先端研究を少しずつ紹介していきたいと思います。

 

関連動画

関連文献

[1] “DNA origami technology for biomaterials applications” Endo, M.; Yang, Y.; Sugiyama, H. Biomater. Sci. 20121, 347. DOI:10.1039/c2bm00154c
[2] “DNA in a material world” Seeman, N. C. Nature 2003421, 427. doi:10.1038/nature01406
[3] “Folding DNA to create nanoscale shapes and patterns” Rothemund, P. W. K. Nature 2006440, 297. doi:10.1038/nature04586

 

関連書籍

[amazonjs asin=”4062574721″ locale=”JP” title=”DNA (上)―二重らせんの発見からヒトゲノム計画まで (ブルーバックス)”][amazonjs asin=”4062165341″ locale=”JP” title=”生物化するコンピュータ”][amazonjs asin=”B095P61D8L” locale=”JP” title=”DNA origami入門 ―基礎から学ぶDNAナノ構造体の設計技法―”]

 

外部リンク

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 【超難問】幻のインドールアルカロイドの全合成【パズル】
  2. データケミカル株式会社ってどんな会社?
  3. カーボンナノベルト合成初成功の舞台裏 (3) 完結編
  4. 開催間近!ケムステも出るサイエンスアゴラ2013
  5. 学術変革領域(B)「糖化学ノックイン」発足!
  6. 複雑にインターロックした自己集合体の形成機構の解明
  7. PACIFICHEM2010に参加してきました!②
  8. 可視光を捕集しながら分子の結合を活性化するハイブリッド型ロジウム…

注目情報

ピックアップ記事

  1. Reaxys Prize 2017ファイナリスト発表
  2. 実験教育に最適!:鈴木ー宮浦クロスカップリング反応体験キット
  3. ウランガラス
  4. 怒涛の編集長 壁村耐三 ~論文と漫画の共通項~
  5. 配位子が酸化??触媒サイクルに参加!!
  6. 危険物データベース:第4類(引火性液体)
  7. (R,R)-DIPAMP
  8. マテリアルズ・インフォマティクスに欠かせないデータ整理の進め方とは?
  9. 大学生向け”オイシイ”情報の集め方
  10. ニッケル触媒による縮合三環式化合物の迅速不斉合成

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2014年6月
 1
2345678
9101112131415
16171819202122
23242526272829
30  

注目情報

最新記事

粉末 X 線回折の基礎知識【実践·データ解釈編】

粉末 X 線回折 (powder x-ray diffraction; PXRD) は、固体粉末の試…

異方的成長による量子ニードルの合成を実現

第693回のスポットライトリサーチは、東京大学大学院理学系研究科(佃研究室)の髙野慎二郎 助教にお願…

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP