[スポンサーリンク]

化学者のつぶやき

ここまでできる!?「DNA折り紙」の最先端 ① ~入門編~

[スポンサーリンク]

 

「DNA折り紙」という技術をご存じですか? 一言で述べるなら、DNA鎖を折り曲げ、ナノスケールの構造体を作り上げる技術です。

2006年の報告以来、大きな夢を感じさせるアウトプットが続々と報告されているのですが、その一方でビジュアル的にとても面白いという希有な特徴も持ち合わせています。我が国の伝統芸能とは元来無関係なはずですが、美的側面はまさに「Origami」の名を冠するにふさわしいものです。

この未来的技術・「DNA折り紙」の進展について、総説[1]を参考に数回にわたって紹介していきたいと思います。

まずは「DNA折り紙とはなんぞや?」というお話から。

DNA分子は皆さんもご存じの通り、決まった相手とだけ二重らせんを組む性質があります。この現象を応用してナノ構造体を作ろうとする研究は、Nadrian C. Seemanという研究者によって開拓されました。

初期に作られたもっとも有名な一つが、Seemanの立方体と呼ばれる構造体です。下図に示す通り、選択的のり付け部位をもったDNAモチーフを設計し、それらを頂点として互いに組み合わせて立方体を組みあげます。

このように、彼は特定のDNAモチーフを設計しながら様々な構造体を作り上げ、「構造DNAナノテクノロジー」と呼ばれる分野の基礎を築きあげました。[2]

DNAOrigami_3

(画像:論文[2]より)

その後しばらくの年月を経た2006年、「DNA折り紙」技術の電撃的な報告がなされました[3]。カリフォルニア工科大学の若き研究者・Paul Rothemundによるものです。

DNA折り紙法の特徴は長い一本鎖DNA(~7000塩基)とstaple strand(短い相補的DNA鎖、多くは32塩基)を組み合わせる工夫にあります。これらを混ぜて加熱・冷却することで長鎖DNAを折りたたませ、望みの構造に落ち着かせます。根底を流れる考え方はSeemanの方法と共通ですが、大きなサイズの構造体が信頼性高く作れる(~100nmサイズ)ことに加え、特定の「住所」を持つstaple strandに好みの機能を付与できることも際だった特徴です。

DNAOrigami_2

(画像:論文[1]より)

Rothemundはこの技術のデモンストレーションとして、複雑な構造をもつ平面(2D)構造体を多数作り上げてみせました。中でも目を引く有名なものは、ナノサイズのスマイルマークや世界地図でしょう。こんなものがDNAを混ぜるだけで自動的に組み上がるのですから、驚くほかありません。もっと見たい方は、関連動画のTEDプレゼンをご覧ください。

 

DNAOrigami_1

(画像:論文[1]より)

まだ新しい技術なのですが、現在までの発展は実に目覚ましいものがあります。Rothemundの成し遂げた2D構造に加え、最近では立体(3D)構造も構築できるようになっています。さらにはスイッチ分子によって構造変化を起こすなど、機能を持つ構造体も登場しています。

ビジュアル要素だけでもこの上なく楽しい技術ですが、具体的にどんな使われ方をしていくと思いますか?まだまだ開拓余地の多い技術ですから、科学者の果てなき想像力と夢が応用の地平を拓くといえます。アイデア次第では、読者の皆さんでも優れたアウトプットが出せるかも!?

次回からは、そんな最先端研究を少しずつ紹介していきたいと思います。

 

関連動画

関連文献

[1] “DNA origami technology for biomaterials applications” Endo, M.; Yang, Y.; Sugiyama, H. Biomater. Sci. 20121, 347. DOI:10.1039/c2bm00154c
[2] “DNA in a material world” Seeman, N. C. Nature 2003421, 427. doi:10.1038/nature01406
[3] “Folding DNA to create nanoscale shapes and patterns” Rothemund, P. W. K. Nature 2006440, 297. doi:10.1038/nature04586

 

関連書籍

 

外部リンク

cosine

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. ケムステの記事が3650記事に到達!
  2. Reaxys Prize 2011発表!
  3. 三種類の分子が自発的に整列した構造をもつ超分子共重合ポリマーの開…
  4. 禅問答のススメ ~非論理に向き合う~
  5. iPhone/iPod Touchで使える化学アプリ-ケーション…
  6. リンだ!リンだ!ホスフィン触媒を用いたメチルアミノ化だ!
  7. ホウ素から糖に手渡される宅配便
  8. 三核ホウ素触媒の創製からクリーンなアミド合成を実現

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 徒然なるままにセンター試験を解いてみた
  2. いざ、低温反応!さて、バスはどうする?〜水/メタノール混合系で、どんな温度も自由自在〜
  3. Dead Endを回避せよ!「全合成・極限からの一手」⑧(解答編)
  4. 有機反応を俯瞰する ーリンの化学 その 2 (光延型置換反応)
  5. 幾何学の定理を活用したものづくり
  6. 有機薄膜太陽電池の”最新”開発動向
  7. フッ素をホウ素に変換する触媒 :簡便なPETプローブ合成への応用
  8. ナトリウムトリス(1,1,1,3,3,3-ヘキサフルオロイソプロポキシ)ボロヒドリド:Sodium Tris(1,1,1,3,3,3-hexafluoroisopropoxy)borohydride
  9. 分子光化学の原理
  10. 第116回―「新たな分子磁性材料の研究」Eugenio Coronado教授

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2014年6月
« 5月   7月 »
 1
2345678
9101112131415
16171819202122
23242526272829
30  

注目情報

注目情報

最新記事

ドラえもん探究ワールド 身近にいっぱい!おどろきの化学

概要「化学」への興味の芽を育むマンガ+解説書 子ども(大人も)の毎日は、「化学」とのお付き合…

データ駆動型R&D組織の実現に向けた、MIを組織的に定着させる3ステップ

開催日:2022/05/25 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

薬剤師国家試験にチャレンジ!【有機化学編その1】

2022.5.21 追記: 問3の構造式を再度訂正しました。2022.5.2…

化学知識の源、化学同人と東京化学同人

化学の専門家なら化学同人と東京化学同人の教科書や参考書を必ず一冊は購入したことがあると思います。この…

天才プログラマー タンメイが教えるJulia超入門

概要使いやすさと実行速度を兼ね備えた注目のプログラミング言語Julia.世界の天才プ…

【Spiber】新卒・中途採用情報

【会社が求める人物像】私たちの理念や取り組みに共感し、「人を大切にする」とい…

飲むノミ・マダニ除虫薬のはなし

Tshozoです。先日TVを眺めていて「かわいいワンちゃんの体をダニとノミから守るためにお薬を飲ませ…

MEDCHEM NEWS 31-2号「2020年度医薬化学部会賞」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

有機合成化学協会誌2022年5月号:特集号 金属錯体が拓く有機合成

有機合成化学協会が発行する有機合成化学協会誌、2022年5月号がオンライン公開されました。連…

高分子材料におけるマテリアルズ・インフォマティクスの活用とは?

開催日:2022/05/18 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP