[スポンサーリンク]

一般的な話題

液体ガラスのフシギ

[スポンサーリンク]

 

ウェブ散策をしていて気になった技術を紹介します

Tshozoです。

今回少し以前から気になっていた技術を紹介します。それは、「液体ガラス(Liquid Glass)」のことです。

ガラスが液体? というのも、ガラスは元素構成SiO2、「常温で固体(のような状態)」で、一般的な「融点」と理解できる粘度を持つのは1200℃前後。常温で液体になんかなりゃあしません。

Glass_02.png高温(1200℃)で粘度が低くなったガラス
なお厳密にはSiO2 ガラスは室温でも液体・・・のようです

 しかし。十数年前に株式会社「日興」及び「モクテックカメムラ」(注:情報が錯綜しておりどのメーカ殿が最初に開発したのかを正確に調べることが叶いませんでした・申し訳ありません)が開発した「常温液体ガラス」、「液体『のように』扱えるガラス」の登場により大きくイメージが変わります。曰く、木に塗れる。曰く、コンクリに塗れる。しかも常温。塗るだけ。それでホーローと同じように、どんな表面にもガラスコーティングが出来るという非常に面白いものです。特に「日興」社の成果はテレビで放映されたことから一気に注目されました。

ただ、当時から不思議だったのがその成分。石英を使っているとは聞いたものの、一体そんなものがどうやってコーティングしたあとフィルム化するかがわからなかったためです。そこで色々海外の文献を漁っていたところ、ドイツSaarbrücken大学が開発し、同じくドイツ”Nanopool”社が特許を持ち市販化と研究開発を進める同様の材料”Liquid Glass”に行き当たり、それを調べることでだいたいどういう原理なのかの推定をしましたので、その中身を紹介いたします。

Glass_03.png“Nanopool”社 ロゴ 同社HPより引用

どういうものなのか?

まずNanopool社による、下の写真をご覧ください。

Glass_04.png薄さは100nm 同社資料(参考文献3)より引用
写真上部のシワになったような部分も全部ガラス!

 表面にペラペラになった薄ーいガラスが地盤(モノの表面)にキッチリひっついているのです。一体、どういうことなのか。

 

どうやって作るのか?

同社が出した文書を色々と見ますと

「液体ガラス」スプレーを対象物に適量吹き付ける→ほっとく→30分でコーティング完了

ということです。紫外線も換気も要らんと書いてますが、後で述べるように少しアルコールが入っているので多少の換気は必要でしょう。有機物系のコーティング材と異なり紫外線処理や加熱処理をしなくてもフィルム化する、またVOCが極めて少なく「不燃である」という非常に低環境負荷、安全な性質を持っています。

Glass_05.pngシュッとひとふき

何で出来てるの?

同社の主張する限りでは、「水+エタノール+微粒ガラス」という成分表示のみで出来ているとしていますが、辛うじて見つけた文面ではトルコ原産の「quatz sand(石英・SiO2の結晶)」から取り出した微粒子が主成分としています。更にGoogle先生経由で同社(Nanopool社)の特許を見てみました。その結果、

A. SiO2系無機微粒子(これが石英と思われます)
B. TEOS系成分+アルコール
C. バインダー少量
D. Mg, V, Zn等の成分少量

が入っているとのこと。これは日本の各メーカともに同様の成分を用いていることから、ほぼ同様の組成ではあるもようです。

このうちちょっと分かり辛いB. TEOSについて最初に述べます。TEOSとは「テトラエトキシシラン」といい、分子式はSi(OC2H5)4。「オルトケイ酸テトラエチル」とも言われケイ素化学や素材化学でよく使用される材料で、下のような分子構造をしています。

Glass_06.png

TEOS分子構造 Si(OC2H5)4
特許を見ると腕のところの構造が少し異なるものを使っているもよう

 これは水分に触れると・・・

Glass_08.png ①のような加水分解反応を引き起こします。さらに脱水すると②のように-Si-O-Si-・・・という分子構造になり、結果的に微粉シリカ(SiO2)の原料にもなったりする重要なケイ素系の化学物質です。ただ、作ったことがある人はすぐわかりますが、このTEOSでフィルムを作ろうとしてもパッキパキの脆ーい、粉状物体になります(下図)。今回のような弾性のある「フィルム」状のものはとてもTEOSだけで出来上がるようなもんではないでしょう。

Glass_07.png

TEOSの亜種 TMOS(TetraMethyl OrthoSilicate)でつくったフィルム表面(上の写真)
色々混ぜたりするとそれなりのものは出来る(下の写真)が、だいたい脆い
だいいち、ウデが悪いとフィルムどころか粉状になる 文献2より引用

 ではなんで同社の材料ふくめ「液体ガラス」はフィルム化するのか。いちおうA. 石英の表面上にはOH基が多く存在するため、原理的にはA.とB.は②に類似した反応を起こすことが可能です。そのことから鑑みるに(以下は筆者の勝手な推定なのですが)、A.は高分子材料、B.はTEOSという低分子材料にあたる。これは「大きな」SiO2と「小さな」SiO2の組み合わせになっているところにミソがあると考えられます。あとバインダ(有機物)も極少量入っているようで、最終的に有機無機ハイブリッド構造が出来るように工夫しているのではないかと思われます。これがフィルム化可能な理由でしょう。

 またかなり高い変形率(200%程度伸長可能とのこと)を保つのも、この組合せの妙があるためと推測されます。無機系材料は混ぜただけだとパキパキの脆いフィルムしか出来ない(すら出来ない)場合が多いのですが、同社が2001年に創業してから相当長い間研究開発を重ねた結果、現在の成分に行きついたのだと推定されます。なお同社の関連文書に目を通すと、フィルムというより「ネットワーク」で、そのためにガスもよく通す構造であることが暗喩されています。

Glass_09.png最終的に構成されていると考えられる、ガラスコーティングフィルムの構造
緑が石英微粒子、青線がTEOS成分、黄がバインダ、赤は添加元素(筆者が勝手に推定)

何に使えるの? 安全なの?

おそらく、「何でも」使えます。何を言ってるかというとNanopool社の場合、ドイツ、イギリスで現在適用されているのが台所の滅菌処理。上からガラスで封じ込めることになるので、とにかく物理的に触れないようにできる。そういう用途に使えるというわけです。またガラスが主成分なうえ、何故か撥水性が非常に高くなるらしく、水またはお湯だけで洗える。毒性の高い漂白剤とか要らない。〇ァブリーズとかも要らないかも。

また驚きですが、衣類にも使える。超撥水性が付くので、汚れない、汚れてもすぐ取れる。ついでに言うと(上の構造が確かならば)多孔質のためガスは非常によく通すので、例えば衣類にかかっても通気性が悪くなるようなことは無いようです。酸化防止には向きませんが・・・。

Glass_12.png

台所の器具類や衣類・布類に処理した例 文献5より引用
台所の例は左半分がNanopool社の処理を施したもの

 なお安全性についてはアスベスト化の危険性が懸念されますが、メーカ曰く「作業中・作業後いずれも安全」だそうです。その理由として、まずナノレベルの材料は使ってはいるけれど も湿った状態で使うので飛散せず、塗ったあとは固化するので再飛散もないということで。布を激しく振ったり切ったりすると飛散する懸念もありますが、どうもそういうこともなさそう。もし目に入ったらという点がちょっと気になるのですが、使用にあたっては厳密な安全審査を受けているようです。

Glass_10.png

“Nanopool”処理済の布類の切断検証のもよう 文献4より引用

 このほか、厨房の滅菌、店舗のガラスや駅・美術館の床、玩具の殺菌など用途は無限。日本国内各社も不燃化以外にゼネコン関係の材料への採用が多いようですが、衛生関係などの適用も是非検討していっていただきたいところです。

ちなみに「いくらでも簡単に補修できる」という特長もあります。これは特にプラント容器やパイプのガラスライナなどの用途に極めて重要な性質になりえます。数メートルレベルの容器内のガラスライナは一旦ヒビが入ったりすると補修・復帰が極めて困難なのですが、この成分だったらヒビが入ったりしても重ね塗りするか、アルカリで溶融させて再度塗りなおせばいいのですから。また樹脂類にもコートできることから、このスプレーで高耐溶剤シール材の出来上がり、てなことも考えられましょう。日本国内のメーカではこうした化学系部品、衛生関係品への展開はまだ実施していないようで、Nanopool社に負けぬよう是非様々な分野への応用を図って頂きたいところです。

ということで今回見つけたこの材料、こうした単純な材料の組み合わせでもまだまだ可能性に満ちており、いくらでも用途は広げられるのだと改めて化学の面白さを感じた楽しい事例でした。たとえばハードプラスチック系マイクロスフィアと柔軟な架橋分子のくみあわせとかは何か面白いものが出来そうですがどなたか合成してくださいませんか?

それでは今回はこんなところで。

【参考文献】

  1. 株式会社 日興殿 HP リンク
  2. “Silica based hybride coatings”  J. Mater. Chem. 2009, 19, 3116-3126 リンク
  3. “Nanopool Media Compilation English Publication” リンク
  4. “Working with NP-coatings at NanoPool.” リンク
  5. “Smart Solutions for HCAI Programme” リンク
Avatar photo

Tshozo

投稿者の記事一覧

メーカ開発経験者(電気)。56歳。コンピュータを電算機と呼ぶ程度の老人。クラウジウスの論文から化学の世界に入る。ショーペンハウアーが嫌い。

関連記事

  1. タキサン類の全合成
  2. 禅問答のススメ ~非論理に向き合う~
  3. 日本のお家芸、糖転移酵素を触媒とするための簡便糖ドナー合成法
  4. いざ、低温反応!さて、バスはどうする?〜水/メタノール混合系で、…
  5. 炭素繊維は鉄とアルミに勝るか? 番外編 ~NEDOの成果について…
  6. 「人工タンパク質ケージを操る」スイス連邦工科大学チューリヒ校・H…
  7. 溶媒の同位体効果 solvent isotope effect
  8. ポンコツ博士の海外奮闘録⑥ 〜博士,アメ飯を食す。おうち系お肉編…

注目情報

ピックアップ記事

  1. 172番元素までの周期表が提案される
  2. 英文校正会社が教える 英語論文のミス100
  3. LG化学がグローバルイノベーションコンテストを開催へ
  4. タミフルをどう作る?~インフルエンザ治療薬の合成~
  5. ものづくりのコツ|第10回「有機合成実験テクニック」(リケラボコラボレーション)
  6. 竹本 佳司 Yoshiji Takemoto
  7. 芳香環のハロゲン化 Halogenation of Aromatic Ring
  8. 持続可能な社会を支えるゴム・エラストマー:新素材・自己修復・強靱化と最先端評価技術
  9. ウッドワード・ホフマン則を打ち破る『力学的活性化』
  10. 第142回―「『理想の有機合成』を目指した反応開発と合成研究」山口潤一郎 教授

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2014年10月
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

最新記事

塩野義製薬:COVID-19治療薬”Ensitrelvir”の超特急製造開発秘話

新型コロナウイルス感染症は2023年5月に5類移行となり、昨年はこれまでの生活が…

コバルト触媒による多様な低分子骨格の構築を実現 –医薬品合成などへの応用に期待–

第 642回のスポットライトリサーチは、武蔵野大学薬学部薬化学研究室・講師の 重…

ヘム鉄を配位するシステイン残基を持たないシトクロムP450!?中には21番目のアミノ酸として知られるセレノシステインへと変異されているP450も発見!

こんにちは,熊葛です.今回は,一般的なP450で保存されているヘム鉄を配位するシステイン残基に,異な…

有機化学とタンパク質工学の知恵を駆使して、カリウムイオンが細胞内で赤く煌めくようにする

第 641 回のスポットライトリサーチは、東京大学大学院理学系研究科化学専攻 生…

CO2 の排出はどのように削減できるか?【その1: CO2 の排出源について】

大気中の二酸化炭素を減らす取り組みとして、二酸化炭素回収·貯留 (CCS; Carbon dioxi…

モータータンパク質に匹敵する性能の人工分子モーターをつくる

第640回のスポットライトリサーチは、分子科学研究所・総合研究大学院大学(飯野グループ)原島崇徳さん…

マーフィー試薬 Marfey reagent

概要Marfey試薬(1-フルオロ-2,4-ジニトロフェニル-5-L-アラニンアミド、略称:FD…

UC Berkeley と Baker Hughes が提携して脱炭素材料研究所を設立

ポイント 今回新たに設立される研究所 Baker Hughes Institute for…

メトキシ基で転位をコントロール!Niduterpenoid Bの全合成

ナザロフ環化に続く二度の環拡大というカスケード反応により、多環式複雑天然物niduterpenoid…

金属酸化物ナノ粒子触媒の「水の酸化反応に対する駆動力」の実験的観測

第639回のスポットライトリサーチは、東京科学大学理学院化学系(前田研究室)の岡崎 めぐみ 助教にお…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP