[スポンサーリンク]

ケムステニュース

ビールに使われている炭水化物を特定する方法が発見される

[スポンサーリンク]

ビールは昔から多くの人々に愛されてきました。特にドイツはビールの本場として知られており、その愛情の深さはかなりのものです。そして最近、ドイツ・ミュンヘン工科大学(TUM)に所属する分析化学者フィリップ・シュミット・コップリン氏ら研究チームは、467種類のビールを高度な質量分析技術により解析し、未知の分子を多数発見しました。この結果は、7月20日付の科学誌『Frontiers in Chemistry』に掲載されました。 (引用:ナゾロジー8月23日)

アスパラガスチョコレートと食べ物に関する論文をケムスケニュースでは最近次々と取り上げていますが、今回は仕事終わりの至福の一杯、ビールに関する論文を紹介します。

さっそく本文の内容を見ていきます。まず序論ではドイツの有名な法律、ビール純粋令(Bavarian Purity Law)について触れており、ビールの品質と小麦のビールへの使用を制限することを目的とし、1516年にバイエルン侯ヴィルヘルム4世が「ビールは、大麦、ホップ、水のみを原料とする」と定めたこと(16世紀半ばには「純粋令」に発酵のための酵母が追加)、そしてこれが現在でも有効な食品に関連する法律としては世界最古であることが紹介されています。一方でドイツ以外では、様々な原料を使ったビールがあり、例えば、ベルギーのホワイトビール小麦を使ったクラシックビールとして有名かつ、アルコールフリーのビールとしても市場が拡大しています。また、Zuthoと呼ばれるインド伝統的なビールにはが使われています。米やコーンを原料としてビールを製造することは、独特の特性を持たせることができ、芳醇な香りと琥珀色を引き出したり、グルテンフリーにすることができたり、酵素の活性を上げると報告されています。しかしながらデメリットもあるため、決まった割合で麦芽と置き換えてコーンや米を使用する方が一般的で、これにより原料価格を抑え、またマッシングと呼ばれる糖化のプロセスを短い時間で、さらに低い温度で進行させることができます。

本文中では触れられていませんが、日本で製造されるビールには米・コーン・スターチが添加されている場合が多いようです。また日本の酒税法上のビールは、

 麦芽、ホップ及び水を原料として発酵させたもの

 麦芽、ホップ、水及び麦その他の政令で定める物品を原料として発酵させたもの(その原料中麦芽の重量がホップ及び水以外の原料の重量の合計の百分の五十以上のものであり、かつ、その原料中政令で定める物品の重量の合計が麦芽の重量の百分の五を超えないものに限る。)

 イ又はロに掲げる酒類にホップ又は政令で定める物品を加えて発酵させたもの(その原料中麦芽の重量がホップ及び水以外の原料の重量の合計の百分の五十以上のものであり、かつ、その原料中政令で定める物品の重量の合計が麦芽の重量の百分の五を超えないものに限る。)

となり、ビールは麦芽比率が50%以上で副原料は決められたものを規定量だけ使用したものになります。発泡酒というアルコールもありますが、これは麦芽比率が50%未満であったり、指定外の副原料を使ったアルコール飲料がこれに該当します。またいわゆる第三のビールというアルコールは、そもそも原料に麦芽を使っていないものか発泡酒に別のアルコール飲料を混ぜたものを指します。これらの分類はアルコールに課せられる税金に関連しており、飲料メーカーが、ビールや発泡酒に税法上分類されなくても、ビールの風味を楽しめる飲料を開発してきた結果、多様なビールテイストの商品が売られている現状があります。

本文に戻りますがビールに関する分析は歴史が古く、穀物の副原料を調べるための無機成分や窒素量の測定や炭素の安定同位体分析、2次元電気泳動と質量分析によるタンパク質の分析、液クロによるコーン固有のオキシインドール誘導体の検出などが行われてきました。近年、分析機器とその分析手法の発展によってビールの分析にも新しい展開があり、分析によってビールに含まれる化合物全体が判明し、原料の違いの影響がその代謝物で確認されています。また発酵過程における複雑な反応も示されています。そんな中、本研究ではイオンサイクロトロン共鳴質量分析とLC-MSを使ってビールを分析し、統計解析とネットワーク分析によりビールの原料の違いに由来する代謝物への影響を調べました。

では実験方法に移りますが、実際に原料や発酵方法、アルコール含有量、色が異なる40か国、400種類のビールを分析しました。使用した分析装置ですが、一つはフーリエ変換イオンサイクロトロン共鳴質量分析計(DI-FTICR-MS)を使用しました。GCやLCで広く使用されている質量分析計は四重極型であり、電場で検出されるイオンの質量電荷比を調べますが、このイオンサイクロトロン共鳴型では、イオンに磁場をかけてサイクロトロン運動させてその周回周期を検出し、イオンの質量電荷比を算出します。他の質量分析法よりも極めて高分解能であることが特徴で、本研究では平均±0.15 ppm以下の精度で測定されました。

LC-MSは、UPLC-ToF-MSを使用し、ESIにてイオン化する方法で分析が行われました。比較サンプルとしてグリッツ、コーンスターチ、コーンの粉、コーンの油、小麦のグリッツ、小麦粉、全粒粉、浮き粉、ライスグリッツ、米粉、米でんぷんの抽出物も測定されました。

まず、DI-FTICR-MSを行ったところ、m/z 比が100から1000の検出されたイオンを帰属し、7700もの分子が含まれていることを確認しました。その帰属によると2次代謝物である極性の糖類やリン酸塩、硫酸塩、ペプチドからの非極性のリン脂質やホップ苦味酸、不飽和ポリフェノール、メイラード反応物などが含まれていました。

DI-FTICR-MSから帰属された化学種のVan Krevelen図で、O/CとH/Cで化学種をプロットしている。(出典:原著論文

次に多変量解析の一つである直行部分最小二乗法ー判別分析(OPLS-DA)をこのデータに適用しました。すると大麦、小麦、コーンとライスの原料の違いによって差が明確に表れる結果になりました。第一成分(図A-1のX軸)ではコーンと米は同じ位置になっていますが、第二成分(図A-1のY軸)でやや分離され、図A-2の第二成分、第三成分の分析でそれぞれが別の位置にプロットされる結果になりました。よってこの統計的な解析によりビールの代謝物が炭水化物の種類に影響することを立証しました。

DI-FTICR-MSの結果をOPLS-DAで解析した結果(出典:原著論文

炭水化物ごとに含まれる分子を見ていくと小麦の場合には、多数の極性の高いリン酸塩が含まれ、コーンでは特定の脂質が含まれ、米の場合にはペプチドと予想されるエリアに多数の帰属された分子が含まれています。

B:小麦 C:コーン D:米が使われているビールのDI-FTICR-MSから帰属された化学種のVan Krevelen図(出典:原著論文

加えて検出された質量から生物内で行う反応で質量同士をつなげ関係性を図に表すと、炭水化物の違いによる代謝物の変化を確認することができます。

検出された質量のネットワーク図、各質量の円のカラーによって検出された炭水化物の違いを示す。(出典:原著論文

まず、コーンに関しては水素化、脱水素化、ヒドロキシ化、水・グリセロール付加された脂質が確認できます。さらに、インドール-3-酢酸を出発物質とした生合成が進行していることが判明しました。同時に米についても似たような反応の生成物が確認されています。小麦が使われているビールに関しては、ベンゾキサジノン誘導体が特徴的に含まれることが分かりました。全体を見ると、トリプトファンに左右される生合成からの二次代謝物が、醸造における小麦やコーン、米といった炭化水素源の差別化をコントロールしているようです。ここまでは、精密質量とバイオケミストリー上の関係から導き出された結果であり、構造情報の確定には、LC-MSによる解析が必要です。

実際に100のビールに対して固相抽出の前処理を行ってUPLC-ToF-MSを測定しました。すると平均680ものクロマトグラフィーのピークがサンプルごとに検出され、全体の三分の一に対してOPLS-DAで解析を行いました。するとDI-FT-ICR-MSと同様に第一成分、第二成分(図B-I)ではコーンと米が同じ位置に出現するものの、第一成分と第三成分(図B-II)では、炭水化物別に全てが異なる位置にプロットされる結果になりました。

UPLC-ToF-MSの結果をOPLS-DAで解析した結果(出典:原著論文

MS/MSスペクトルから質量類似ネットワークを構築しました。すると小麦のビールから検出された化合物に関連する二つのクラスターが確認されました。

質量類似性ネットワーク各質量の円のカラーによって検出された炭水化物の違いを示す。(出典:原著論文

一つ目は、DI-FT-ICR-MSでも確認されたベンゾキサジノン誘導体のクラスターです。もう一つのクラスターについては、データベースに実測の結果が無いもののフラグメンテーションからN-acyl-glutamineの反応物だと予測されます。コーンについても二つの特有のクラスターが観測され、より有意なクラスターの方は非極性の脂質であると推測されています。米に関しては、クラスターを形成していないもののGlu-Trp-Leu/Ile-Pro と環状Asp-Ser-Val-Leu-Trp ペプチドと予想されるピークが観測されました。

米に特徴的なマーカーとして環状Asp-Ser-Val-Leu-Trp=N-β-D-glucopyranosyl-indole-3-acetic acidが過去の文献から報告されていますが、本研究においても代謝物をUPLC-ToF-MSで分析した時の保持時間とMSが合成品と一致し、この化合物の有無で米の使用を判別できることを確認しました。

A:クロマトグラフィーの保持時間 B:MSフラグメンテーションとクロマトグラフィーにおけるN-β-D-glucopyranosyl-indole-3-acetic acidの合成品とビールから検出されたピークの比較(出典:原著論文

各原料に特徴的な代謝物をまとめると下記のようになり、比較サンプルからも同様の化学種が観測されることを確認しました。

マーカーとなり得る化合物の骨格例(コーンの脂質の場合、二重結合やOH基の位置は確認されていない)

まとめとして、ビールに使われる炭水化物の推定を2種類の質量分析方法で行うことに成功しました。一つの解析手法としては主成分分析であり、どちらの質量分析でも炭水化物ごとに近い位置にサンプルの測定結果がプロットされることを確認しました。また、質量分析結果から得られたピークを帰属することで生合成反応を推定しそれぞれの炭水化物に特徴的でマーカーとなりうる化合物が確認されました。ビールによっては、原材料の表示に無い炭水化物が含まれていると分析が示した事例もあり、さらなる調査が必要だとコメントしています。

本研究は、ドイツの研究機関であるHelmholtz Zentrum MünchenAnalytical Biogeochemistry部門Philippe Schmitt-Kopplin教授らのグループによって発表されました。この論文以外にもPhilippe教授は、DI-FT-ICR-MSで様々な食品や飲料のメタボローム解析に関する論文を発表しています。論文の終盤で(6, 6-d2) N-β-D-glucopyranosyl-indole-3-aceticの合成品とビールから得られた質量分析の結果を比較していますが、この合成品は、京都大学大学院農学研究科 応用生命科学専攻生物調節化学研究室の宮川 恒教授から提供いただいたと論文に記されています。14年前に合成された化合物のようで、長期間保存していた理由やPhilippe教授が宮川教授に提供してもらった経緯が気になるところです。残念ながら調べたビールの商品名は公表されていないので日本のビールが調査対象だったかは分かりませんが、日本のビールの特徴について個人的に興味があります。

過去に取り上げた研究と比較すると、研究のアプローチは代謝物の同定ということでアスパラガスの論文と類似点があり、統計解析については、主成分分析を使用したということでウィスキーの判別の論文に近い研究だと感じました。ビール中の炭水化物の判別を化学分析で行うことが本研究の目的でしたが、日本の場合は炭水化物の割合によって課せられる税金が変わるため、定量的なことができるようになれば応用が広がるかもしれません。また、この代謝物の結果とビールの味に関係があるのかが気になるところであり、代謝物の解析がより美味しいビールの開発につながることを期待します。さらには、小麦などは食物アレルギーの代表的な物質であり、食物にアレルギー物質が本当に含まれていないかを調べる方法になるかもしれません。代謝物を調べる研究においては、本研究のように精密質量の精度や、クロマトグラフィーの分離能によって検出される化学種の種類が左右され、考察できる事象にも影響を与えるようです。そのため、さらなる分析機器の進化によって代謝物の研究と応用が進むことを期待します。

関連書籍

[amazonjs asin=”4065120519″ locale=”JP” title=”カラー版 ビールの科学 麦芽とホップが生み出す「旨さ」の秘密 (ブルーバックス)”] [amazonjs asin=”B0968W9G5F” locale=”JP” title=”「ビール」周期表ベリリウムエルビウム化学 パーカー”]

関連リンクと飲料に関するケムステ過去記事

Avatar photo

Zeolinite

投稿者の記事一覧

ただの会社員です。某企業で化学製品の商品開発に携わっています。社内でのデータサイエンスの普及とDX促進が個人的な野望です。

関連記事

  1. 昭和電工、青色LEDに参入
  2. BASF、新規のキラル中間体生産プロセスを開発!
  3. カネボウ化粧品、バラの香りの秘密解明 高級香水が身近に?
  4. ポリエチレンなど合成樹脂、値上げ浸透
  5. 京のX線分析装置、国際標準に  島津製・堀場、EU環境規制で好調…
  6. 光触媒で空気中に浮遊する”新型コロナウイルス”の感染性を消失させ…
  7. 紅麹問題に進展。混入物質を「プベルル酸」と特定か!?
  8. 三菱ウェルと田辺合併 後発薬に新規参入

注目情報

ピックアップ記事

  1. ベシャンプ還元 Bechamp Reduction
  2. チオール架橋法による位置選択的三環性ペプチド合成
  3. 渡辺化学工業ってどんな会社?
  4. 化学の資格もってますか?
  5. 書籍「Topics in Current Chemistry」がジャーナルになるらしい
  6. 相次ぐ化学品・廃液の漏洩・流出事故
  7. アジフェーズ法 AJIPHASE Method
  8. テトラキス(トリフェニルホスフィン)パラジウム(0) : Tetrakis(triphenylphosphine)palladium(0)
  9. 独メルク、電子工業用薬品事業をBASFに売却
  10. 池袋PARCOで「におい展」開催

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年10月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP